IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i8p3987-4000d27805.html
   My bibliography  Save this article

A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol

Author

Listed:
  • Hanno Richter

    (Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853, USA)

  • Michael E. Martin

    (Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853, USA)

  • Largus T. Angenent

    (Department of Biological and Environmental Engineering, Cornell University, Riley-Robb Hall, Ithaca, NY 14853, USA)

Abstract

We have established a two-stage continuous fermentation process for production of ethanol from synthesis gas (syngas) with Clostridium ljungdahlii . The system consists of a 1-L continuously stirred tank reactor as a growth stage and a 4-L bubble column equipped with a cell recycle module as an ethanol production stage. Operating conditions in both stages were optimized for the respective purpose (growth in stage one and alcohol formation in stage two). The system was fed with an artificial syngas mixture, mimicking the composition of syngas derived from lignocellulosic biomass (60% CO, 35% H 2 , and 5% CO 2 ). Gas recycling was used to increase the contact area and retention time of gas in the liquid phase, improving mass transfer and metabolic rates. In stage two, the biocatalyst was maintained at high cell densities of up to 10 g DW/L. Ethanol was continuously produced at concentrations of up to 450 mM (2.1%) and ethanol production rates of up to 0.37 g/(L·h). Foam control was essential to maintain reactor stability. A stoichiometric evaluation of the optimized process revealed that the recovery of carbon and hydrogen from the provided carbon monoxide and hydrogen in the produced ethanol was 28% and 74%, respectively.

Suggested Citation

  • Hanno Richter & Michael E. Martin & Largus T. Angenent, 2013. "A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol," Energies, MDPI, vol. 6(8), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:3987-4000:d:27805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/8/3987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/8/3987/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    2. Battisti, Rodrigo & Galeazzi, Andrea & Prifti, Kristiano & Manenti, Flavio & Machado, Ricardo Antonio Francisco & Marangoni, Cintia, 2021. "Techno-economic and energetic assessment of an innovative pilot-scale thermosyphon-assisted falling film distillation unit for sanitizer-grade ethanol recovery," Applied Energy, Elsevier, vol. 297(C).
    3. Yang, Chunlei & Dong, Lifeng & Gao, Yanhua & Jia, Peng & Diao, Qiyu, 2021. "Engineering acetogens for biofuel production: From cellular biology to process improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Abubackar, Haris Nalakath & Bengelsdorf, Frank R. & Dürre, Peter & Veiga, María C. & Kennes, Christian, 2016. "Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia," Applied Energy, Elsevier, vol. 169(C), pages 210-217.
    5. Khanongnuch, Ramita & Abubackar, Haris Nalakath & Keskin, Tugba & Gungormusler, Mine & Duman, Gozde & Aggarwal, Ayushi & Behera, Shishir Kumar & Li, Lu & Bayar, Büşra & Rene, Eldon R., 2022. "Bioprocesses for resource recovery from waste gases: Current trends and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Regis, Francesco & Monteverde, Alessandro Hugo Antonio & Fino, Debora, 2023. "A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation," Energy, Elsevier, vol. 274(C).
    7. Sun, Xiao & Atiyeh, Hasan K. & Zhang, Hailin & Tanner, Ralph S. & Huhnke, Raymond L., 2019. "Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar," Applied Energy, Elsevier, vol. 236(C), pages 1269-1279.
    8. Simge Sertkaya & Nuri Azbar & Haris Nalakath Abubackar & Tugba Keskin Gundogdu, 2021. "Design of Low-Cost Ethanol Production Medium from Syngas: An Optimization of Trace Metals for Clostridium ljungdahlii," Energies, MDPI, vol. 14(21), pages 1-15, October.
    9. Michailos, Stavros & Parker, David & Webb, Colin, 2017. "Design, Sustainability Analysis and Multiobjective Optimisation of Ethanol Production via Syngas Fermentation," MPRA Paper 87640, University Library of Munich, Germany.
    10. Izadi, Paniz & Fontmorin, Jean-Marie & Virdis, Bernardino & Head, Ian M. & Yu, Eileen H., 2021. "The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis," Applied Energy, Elsevier, vol. 283(C).
    11. Li, Yuping & Tan, Fenghua & Peng, Jiangang & Feng, Mi & Liao, Yuhe & Luo, Weimin & Dong, Kaijun & Long, Jinxing, 2023. "Exergy analysis of alternative configurations of biomass gasification-mixed alcohol production system via catalytic synthesis and fermentation," Energy, Elsevier, vol. 280(C).
    12. Shen, Yanwen & Brown, Robert & Wen, Zhiyou, 2014. "Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor," Applied Energy, Elsevier, vol. 136(C), pages 68-76.
    13. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:8:p:3987-4000:d:27805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.