IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i7p3182-3208d26841.html
   My bibliography  Save this article

Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil

Author

Listed:
  • Alexander T. Dale

    (Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15260, USA)

  • André Frossard Pereira de Lucena

    (Programa de Planejamento Energético, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco C, Sala 211, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-972, Brazil)

  • Joe Marriott

    (Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15260, USA)

  • Bruno Soares Moreira Cesar Borba

    (Departamento de Engenharia Elétrica, Universidade Federal Fluminense, Rua Passo da Pátria, Bloco D, Sala 509, São Domingos, Niteroi 24210-240, Brazil)

  • Roberto Schaeffer

    (Programa de Planejamento Energético, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bloco C, Sala 211, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-972, Brazil)

  • Melissa M. Bilec

    (Civil and Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15260, USA)

Abstract

Brazil’s status as a rapidly developing country is visible in its need for more energy, including electricity. While the current electricity generation mix is primarily hydropower based, high-quality dam sites are diminishing and diversification to other sources is likely. We combined life-cycle data for electricity production with scenarios developed using the IAEA’s MESSAGE model to examine environmental impacts of future electricity generation under a baseline case and four side cases, using a Monte-Carlo approach to incorporate uncertainty in power plant performance and LCA impacts. Our results show that, under the cost-optimal base case scenario, Brazil’s GHGs from electricity (excluding hydroelectric reservoir emissions) rise 370% by 2040 relative to 2010, with the carbon intensity per MWh rising 100%. This rise would make Brazil’s carbon emissions targets difficult to meet without demand-side programs. Our results show a future electricity mix dominated by environmental tradeoffs in the use of large-scale renewables, questioning the use tropical hydropower and highlighting the need for additional work to assess and include ecosystem and social impacts, where information is currently sparse.

Suggested Citation

  • Alexander T. Dale & André Frossard Pereira de Lucena & Joe Marriott & Bruno Soares Moreira Cesar Borba & Roberto Schaeffer & Melissa M. Bilec, 2013. "Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil," Energies, MDPI, vol. 6(7), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3182-3208:d:26841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/7/3182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/7/3182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stacey L. Dolan & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Utility‐Scale Wind Power," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 136-154, April.
    2. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    3. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    4. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    5. Jane C. Bare, 2002. "Traci: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts," Journal of Industrial Ecology, Yale University, vol. 6(3‐4), pages 49-78, July.
    6. dos Santos, Marco Aurelio & Rosa, Luiz Pinguelli & Sikar, Bohdan & Sikar, Elizabeth & dos Santos, Ednaldo Oliveira, 2006. "Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants," Energy Policy, Elsevier, vol. 34(4), pages 481-488, March.
    7. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    8. World Bank, 2012. "World Development Indicators 2012," World Bank Publications - Books, The World Bank Group, number 6014, December.
    9. Henriques Jr., Mauricio F. & Dantas, Fabrício & Schaeffer, Roberto, 2010. "Potential for reduction of CO2 emissions and a low-carbon scenario for the Brazilian industrial sector," Energy Policy, Elsevier, vol. 38(4), pages 1946-1961, April.
    10. Denholm, Paul & Margolis, Robert M., 2008. "Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States," Energy Policy, Elsevier, vol. 36(9), pages 3531-3543, September.
    11. Shannon M. Lloyd & Robert Ries, 2007. "Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 161-179, January.
    12. Martins, F.R. & Rüther, R. & Pereira, E.B. & Abreu, S.L., 2008. "Solar energy scenarios in Brazil. Part two: Photovoltaics applications," Energy Policy, Elsevier, vol. 36(8), pages 2855-2867, August.
    13. Shafiei, Ehsan & Saboohi, Yadollah & Ghofrani, Mohammad B., 2009. "Impact of innovation programs on development of energy system: Case of Iranian electricity-supply system," Energy Policy, Elsevier, vol. 37(6), pages 2221-2230, June.
    14. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    15. Lora, E.S. & Andrade, R.V., 2009. "Biomass as energy source in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 777-788, May.
    16. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    17. de Lucena, André Frossard Pereira & Szklo, Alexandre Salem & Schaeffer, Roberto & de Souza, Raquel Rodrigues & Borba, Bruno Soares Moreira Cesar & da Costa, Isabella Vaz Leal & Júnior, Amaro Olimpio P, 2009. "The vulnerability of renewable energy to climate change in Brazil," Energy Policy, Elsevier, vol. 37(3), pages 879-889, March.
    18. Philip M. Fearnside & Salvador Pueyo, 2012. "Greenhouse-gas emissions from tropical dams," Nature Climate Change, Nature, vol. 2(6), pages 382-384, June.
    19. Demarty, M. & Bastien, J., 2011. "GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements," Energy Policy, Elsevier, vol. 39(7), pages 4197-4206, July.
    20. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    2. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    3. Gabriel Constantino & Marcos Freitas & Neilton Fidelis & Marcio Giannini Pereira, 2018. "Adoption of Photovoltaic Systems Along a Sure Path: A Life-Cycle Assessment (LCA) Study Applied to the Analysis of GHG Emission Impacts," Energies, MDPI, vol. 11(10), pages 1-28, October.
    4. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    5. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    6. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    7. Batrancea Ioan & Rathnaswamy Malar Kumaran & Batrancea Larissa & Nichita Anca & Gaban Lucian & Fatacean Gheorghe & Tulai Horia & Bircea Ioan & Rus Mircea-Iosif, 2020. "A Panel Data Analysis on Sustainable Economic Growth in India, Brazil, and Romania," JRFM, MDPI, vol. 13(8), pages 1-19, August.
    8. Gabriel Constantino de Lima & Andre Luiz Lopes Toledo & Leonidas Bourikas, 2021. "The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases," Energies, MDPI, vol. 14(4), pages 1-19, February.
    9. Portugal-Pereira, Joana & Köberle, Alexandre C. & Soria, Rafael & Lucena, André F.P. & Szklo, Alexandre & Schaeffer, Roberto, 2016. "Overlooked impacts of electricity expansion optimisation modelling: The life cycle side of the story," Energy, Elsevier, vol. 115(P2), pages 1424-1435.
    10. Vega-Coloma, Mabel & Zaror, Claudio A., 2018. "Environmental impact profile of electricity generation in Chile: A baseline study over two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 154-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    2. Manfred Lenzen & Roberto Schaeffer, 2012. "Historical and potential future contributions of power technologies to global warming," Climatic Change, Springer, vol. 112(3), pages 601-632, June.
    3. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    4. Treyer, Karin & Bauer, Christian & Simons, Andrew, 2014. "Human health impacts in the life cycle of future European electricity generation," Energy Policy, Elsevier, vol. 74(S1), pages 31-44.
    5. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    6. Carless, Travis S. & Griffin, W. Michael & Fischbeck, Paul S., 2016. "The environmental competitiveness of small modular reactors: A life cycle study," Energy, Elsevier, vol. 114(C), pages 84-99.
    7. Jones, Christopher & Gilbert, Paul & Raugei, Marco & Mander, Sarah & Leccisi, Enrica, 2017. "An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation," Energy Policy, Elsevier, vol. 100(C), pages 350-358.
    8. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    9. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    11. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    12. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    13. Sheldon, Seth & Hadian, Saeed & Zik, Ory, 2015. "Beyond carbon: Quantifying environmental externalities as energy for hydroelectric and nuclear power," Energy, Elsevier, vol. 84(C), pages 36-44.
    14. Pfenninger, Stefan & Keirstead, James, 2015. "Comparing concentrating solar and nuclear power as baseload providers using the example of South Africa," Energy, Elsevier, vol. 87(C), pages 303-314.
    15. De Schepper, Ellen & Van Passel, Steven & Manca, Jean & Thewys, Theo, 2012. "Combining photovoltaics and sound barriers – A feasibility study," Renewable Energy, Elsevier, vol. 46(C), pages 297-303.
    16. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    17. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    18. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    19. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    20. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3182-3208:d:26841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.