Advanced Search
MyIDEAS: Login

Evaluating value-at-risk models before and after the financial crisis of 2008: International evidence

Contents:

Author Info

  • Stavros Degiannakis
  • Christos Floros
  • Alexandra Livada

Abstract

Purpose – The purpose of this paper is to focus on the performance of three alternative value-at-risk (VaR) models to provide suitable estimates for measuring and forecasting market risk. The data sample consists of five international developed and emerging stock market indices over the time period from 2004 to 2008. The main research question is related to the performance of widely-accepted and simplified approaches to estimate VaR before and after the financial crisis. Design/methodology/approach – VaR is estimated using daily data from the UK (FTSE 100), Germany (DAX30), the USA (S&P500), Turkey (ISE National 100) and Greece (GRAGENL). Methods adopted to calculate VaR are: EWMA of Riskmetrics; classic GARCH(1,1) model of conditional variance assuming a conditional normally distributed returns; and asymmetric GARCH with skewed Student-t distributed standardized innovations. Findings – The paper provides evidence that the tools of quantitative finance may achieve their objective. The results indicate that the widely accepted and simplified ARCH framework seems to provide satisfactory forecasts of VaR, not only for the pre-2008 period of the financial crisis but also for the period of high volatility of stock market returns. Thus, the blame for financial crisis should not be cast upon quantitative techniques, used to measure and forecast market risk, alone. Practical implications – Knowledge of modern risk management techniques is required to resolve the next financial crisis. The next crisis can be avoided only when financial risk managers acquire the necessary quantitative skills to measure uncertainty and understand risk. Originality/value – The main contribution of this paper is that it provides evidence that widely accepted/used methods give reliable VaR estimates and forecasts for periods of financial turbulence (financial crises).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.emeraldinsight.com/journals.htm?issn=0307-4358&volume=38&issue=4&articleid=17020691&show=abstract
Download Restriction: Cannot be freely downloaded

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Emerald Group Publishing in its journal Managerial Finance.

Volume (Year): 38 (2012)
Issue (Month): 3 (March)
Pages: 436-452

as in new window
Handle: RePEc:eme:mfipps:v:36:y:2010:i:3:p:436-452

Contact details of provider:
Web page: http://www.emeraldinsight.com

Order Information:
Postal: Emerald Group Publishing, Howard House, Wagon Lane, Bingley, BD16 1WA, UK
Email:
Web: http://www.emeraldinsight.com/mf.htm

Related research

Keywords: ARCH; Financial crisis; Forecasting; Returns; Risk analysis; Stock markets; Value-at-risk; Volatility;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
  2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  3. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
  4. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.
  5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
  6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  7. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  8. Emma M. Iglesias & Oliver Linton, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," Economics Working Papers we094726, Universidad Carlos III, Departamento de Economía.
  9. Chin, Wen Cheong, 2008. "Heavy-tailed value-at-risk analysis for Malaysian stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4285-4298.
  10. Panayiotis Diamandis & Georgios Kouretas & Leonidas Zarangas, 2006. "Value-at-Risk for long and short trading positions: The case of the Athens Stock Exchange," Working Papers 0601, University of Crete, Department of Economics.
  11. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  12. Ozun, Alper & Cifter, Atilla & Yilmazer, Sait, 2007. "Filtered Extreme Value Theory for Value-At-Risk Estimation," MPRA Paper 3302, University Library of Munich, Germany.
  13. Timotheos Angelidis & Stavros Degiannakis, 2008. "Forecasting one-day-ahead VaR and intra-day realized volatility in the Athens Stock Exchange Market," Managerial Finance, Emerald Group Publishing, vol. 34(7), pages 489-497.
  14. Byström, Hans, 2001. "Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory," Working Papers 2001:18, Lund University, Department of Economics.
  15. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing, vol. 6(3), pages 226-238, May.
  16. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
  17. Angelidis, Timotheos & Degiannakis, Stavros, 2008. "Volatility forecasting: Intra-day versus inter-day models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(5), pages 449-465, December.
  18. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  19. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  20. Alex Yi-Hou Huang & Tsung-Wei Tseng, 2009. "Forecast of value at risk for equity indices: an analysis from developed and emerging markets," Journal of Risk Finance, Emerald Group Publishing, vol. 10(4), pages 393-409, August.
  21. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  22. Gordon Alexander, 2009. "From Markowitz to modern risk management," The European Journal of Finance, Taylor & Francis Journals, vol. 15(5-6), pages 451-461.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eme:mfipps:v:36:y:2010:i:3:p:436-452. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Louise Lister).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.