Advanced Search
MyIDEAS: Login

Optimising errors in signaling corporate collapse using MCCCRA

Contents:

Author Info

  • Ghassan Hossari
Registered author(s):

    Abstract

    Purpose – The purpose of this paper is to put forward an innovative approach for reducing the variation between Type I and Type II errors in the context of ratio-based modeling of corporate collapse, without compromising the accuracy of the predictive model. Its contribution to the literature lies in resolving the problematic trade-off between predictive accuracy and variations between the two types of errors. Design/methodology/approach – The methodological approach in this paper – called MCCCRA – utilizes a novel multi-classification matrix based on a combination of correlation and regression analysis, with the former being subject to optimisation criteria. In order to ascertain its accuracy in signaling collapse, MCCCRA is empirically tested against multiple discriminant analysis (MDA). Findings – Based on a data sample of 899 US publicly listed companies, the empirical results indicate that in addition to a high level of accuracy in signaling collapse, MCCCRA generates lower variability between Type I and Type II errors when compared to MDA. Originality/value – Although correlation and regression analysis are long-standing statistical tools, the optimisation constraints that are applied to the correlations are unique. Moreover, the multi-classification matrix is a first in signaling collapse. By providing economic insight into more stable financial modeling, these innovations make an original contribution to the literature.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.emeraldinsight.com/journals.htm?issn=1834-7649&volume=20&issue=3&articleid=17042826&show=abstract
    Download Restriction: Cannot be freely downloaded

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Emerald Group Publishing in its journal International Journal of Accounting and Information Management.

    Volume (Year): 20 (2012)
    Issue (Month): 3 ()
    Pages: 300-316

    as in new window
    Handle: RePEc:eme:ijaipp:v:20:y:2012:i:3:p:300-316

    Contact details of provider:
    Web page: http://www.emeraldinsight.com

    Order Information:
    Postal: Emerald Group Publishing, Howard House, Wagon Lane, Bingley, BD16 1WA, UK
    Email:
    Web: http://www.emeraldinsight.com/ijaim.htm

    Related research

    Keywords: Accounting; Business failures; Corporate collapse; Financial ratios; Modelling; Multi-classification constrained-covariance regres; Multiple discriminant analysis; United States of America;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    2. Dambolena, Ismael G & Khoury, Sarkis J, 1980. " Ratio Stability and Corporate Failure," Journal of Finance, American Finance Association, vol. 35(4), pages 1017-26, September.
    3. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    4. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    5. Edward I. Altman, 1973. "Predicting Railroad Bankruptcies in America," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 184-211, Spring.
    6. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    7. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, 09.
    9. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(02), pages 1477-1493, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eme:ijaipp:v:20:y:2012:i:3:p:300-316. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Louise Lister).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.