IDEAS home Printed from https://ideas.repec.org/a/eee/wdevel/v91y2017icp125-143.html
   My bibliography  Save this article

Evaluating the Performance of Alternative Municipal Water Tariff Designs: Quantifying the Tradeoffs between Equity, Economic Efficiency, and Cost Recovery

Author

Listed:
  • Nauges, Celine
  • Whittington, Dale

Abstract

The design of municipal water tariffs requires balancing multiple criteria such as financial self-sufficiency for the service provider, equity among customers, and economic efficiency for society. A modeling framework is developed for analyzing how alternative municipal water tariff designs affect these three criteria. It is then applied to a hypothetical community in which a municipal water utility provides metered, piped water, and wastewater services to 5,000 households. We analyze how the shift from a uniform volumetric tariff to different increasing block tariff (IBT) designs affects households’ water use and water bills, and how these changes in turn affect measures of equity and economic efficiency for two different financial self-sufficiency targets. We calculate how changes in assumptions about (1) the correlation between household income and water use, and (2) households’ response to average or marginal prices affect the tariffs’ performance in terms of these three criteria. The results show that IBTs perform poorly in terms of targeting subsidies to low-income households regardless of the magnitude of financial subsidies that a utility receives from high-level government. When cost recovery is low, the distribution of subsidies under IBTs is even worse if the correlation between water use and household income is high. IBTs introduce price distortions that induce economic efficiency losses, but we show that these welfare losses are relatively small, especially when households respond to average prices.

Suggested Citation

  • Nauges, Celine & Whittington, Dale, 2017. "Evaluating the Performance of Alternative Municipal Water Tariff Designs: Quantifying the Tradeoffs between Equity, Economic Efficiency, and Cost Recovery," World Development, Elsevier, vol. 91(C), pages 125-143.
  • Handle: RePEc:eee:wdevel:v:91:y:2017:i:c:p:125-143
    DOI: 10.1016/j.worlddev.2016.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305750X16305162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.worlddev.2016.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grafton, R. Quentin & Kompas, Tom & To, Hang & Ward, Michael B., 2009. "Residential Water Consumption: A Cross Country Analysis," Research Reports 94823, Australian National University, Environmental Economics Research Hub.
    2. Andrea Szabó, 2015. "The Value of Free Water: Analyzing South Africa's Free Basic Water Policy," Econometrica, Econometric Society, vol. 83(5), pages 1913-1961, September.
    3. Céline Nauges & Caroline Berg, 2009. "Demand for Piped and Non-piped Water Supply Services: Evidence from Southwest Sri Lanka," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(4), pages 535-549, April.
    4. Saal David S. & Arocena Pablo & Maziotis Alexandros & Triebs Thomas, 2013. "Scale and Scope Economies and the Efficient Vertical and Horizontal Configuration of the Water Industry: A Survey of the Literature," Review of Network Economics, De Gruyter, vol. 12(1), pages 93-129, March.
    5. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    6. Céline Nauges & Dale Whittington, 2010. "Estimation of Water Demand in Developing Countries: An Overview," The World Bank Research Observer, World Bank Group, vol. 25(2), pages 263-294, August.
    7. Severin Borenstein, 2012. "The Redistributional Impact of Nonlinear Electricity Pricing," American Economic Journal: Economic Policy, American Economic Association, vol. 4(3), pages 56-90, August.
    8. Briand, Anne & Nauges, Cã‰Line & Strand, Jon & Travers, Muriel, 2010. "The impact of tap connection on water use: the case of household water consumption in Dakar, Senegal," Environment and Development Economics, Cambridge University Press, vol. 15(1), pages 107-126, February.
    9. Whittington, Dale & Nauges, Céline & Fuente, David & Wu, Xun, 2015. "A diagnostic tool for estimating the incidence of subsidies delivered by water utilities in low- and medium-income countries, with illustrative simulations," Utilities Policy, Elsevier, vol. 34(C), pages 70-81.
    10. Grafton, R. Quentin & Kompas, Tom & To, Hang & Ward, Michael B., 2009. "Residential Water Consumption: A Cross Country Analysis," Research Reports 94823, Australian National University, Environmental Economics Research Hub.
    11. Alexander Danilenko & Caroline van den Berg & Berta Macheve & L. Joe Moffitt, 2014. "The IBNET Water Supply and Sanitation Blue Book 2014 : The International Benchmarking Network for Water and Sanitation Utilities Databook," World Bank Publications - Books, The World Bank Group, number 19811, December.
    12. Renzetti, Steven & Dupont, Diane P. & Chitsinde, Tina, 2015. "An empirical examination of the distributional impacts of water pricing reforms," Utilities Policy, Elsevier, vol. 34(C), pages 63-69.
    13. Whittington, Dale, 1992. "Possible Adverse Effects of Increasing Block Water Tariffs in Developing Countries," Economic Development and Cultural Change, University of Chicago Press, vol. 41(1), pages 75-87, October.
    14. Hausman, Jerry A, 1981. "Exact Consumer's Surplus and Deadweight Loss," American Economic Review, American Economic Association, vol. 71(4), pages 662-676, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Briand & Noukignon Kone, 2020. "Poverty eradication by improving waste collection: an African case study," Working Papers hal-02430455, HAL.
    2. María Á. García-Valiñas & Roberto Martínez-Espiñeira & Marta Suárez-Varela Maciá, 2021. "Price and Consumption Misperception Profiles: The Role of Information in the Residential Water Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 821-857, December.
    3. Abanyie, Samuel Kojo & Ampadu, Boateng & Frimpong, Nana Adwoa & Yahans Amuah, Ebenezer Ebo, 2023. "Impact of improved water supply on livelihood and health: Emphasis on Doba and Nayagnia, Ghana," Innovation and Green Development, Elsevier, vol. 2(1).
    4. Lisa Bagnoli & Salvador Bertomeu-Sanchez & Antonio Estache & Maria Vagliasindi, 2023. "Does the ownership of utilities matter for social outcomes? A survey of the evidence for developing countries," Journal of Economic Policy Reform, Taylor & Francis Journals, vol. 26(1), pages 24-43, January.
    5. Lucia Cecchi & Enrico Conti & Letizia Ravagli, 2022. "The determinants of domestic water demand and the equity of tariffs: Empirical evidence from an Italian municipality," ECONOMIA PUBBLICA, FrancoAngeli Editore, vol. 2022(3), pages 373-395.
    6. Fouquet, Roger & O'Garra, Tanya, 2022. "In pursuit of progressive and effective climate policies: Comparing an air travel carbon tax and a frequent flyer levy," Energy Policy, Elsevier, vol. 171(C).
    7. Céline Nauges & Dale Whittington, 2019. "Social Norms Information Treatments in the Municipal Water Supply Sector: Some New Insights on Benefits and Costs," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-40, July.
    8. Martins, Rita & Antunes, Micaela & Fortunato, Adelino, 2020. "Regulatory changes to Portugal's social tariffs: Carrying water in a sieve?," Utilities Policy, Elsevier, vol. 64(C).
    9. Lisa Bagnoli & Salvador Bertomeu & Antonio Estache & Maria Vagliasindi, 2020. "Are the Poor Better Off with Public or Private Utilities ?A Survey of the Academic Evidence on Developing Economies," Working Papers ECARES 2020-24, ULB -- Universite Libre de Bruxelles.
    10. Beard, Victoria A. & Mitlin, Diana, 2021. "Water access in global South cities: The challenges of intermittency and affordability," World Development, Elsevier, vol. 147(C).
    11. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    12. Alemken Jegnie & James Fogarty & Sayed Iftekhar, 2023. "Urban Residential Water Demand and Household Size: A Robust Meta‐Regression Analysis," The Economic Record, The Economic Society of Australia, vol. 99(326), pages 436-453, September.
    13. Fuente, David, 2019. "The design and evaluation of water tariffs: A systematic review," Utilities Policy, Elsevier, vol. 61(C).
    14. Anne Briand & Author-Name: Noukignon Koné, 2018. "Poverty eradication by improving waste collection: an African case study," Working Papers 20180003, UMR Développement et Sociétés, Université Paris 1 Panthéon-Sorbonne, Institut de Recherche pour le Développement.
    15. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    16. Sowby, Robert B. & South, Andrew J., 2023. "Innovative water rates as a policy tool for drought response: Two case studies from Utah, USA," Utilities Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    2. Whittington, Dale & Nauges, Céline & Fuente, David & Wu, Xun, 2015. "A diagnostic tool for estimating the incidence of subsidies delivered by water utilities in low- and medium-income countries, with illustrative simulations," Utilities Policy, Elsevier, vol. 34(C), pages 70-81.
    3. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    4. Favre, Marine & Montginoul, Marielle, 2018. "Water pricing in Tunisia: Can an original rate structure achieve multiple objectives?," Utilities Policy, Elsevier, vol. 55(C), pages 209-223.
    5. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal.
    7. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    8. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    9. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    10. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
    11. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    12. Martins, Rita & Antunes, Micaela & Fortunato, Adelino, 2020. "Regulatory changes to Portugal's social tariffs: Carrying water in a sieve?," Utilities Policy, Elsevier, vol. 64(C).
    13. Janine Stone & Christopher Goemans & Marco Costanigro, 2019. "Variation in Water Demand Responsiveness to Utility Policies and Weather: A Latent-Class Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-33, September.
    14. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    15. Aina, Ifedotun Victor & Thiam, Djiby Racine & Dinar, Ariel, 2023. "Substitution of piped water and self-supplied groundwater: The case of residential water in South Africa," Utilities Policy, Elsevier, vol. 80(C).
    16. Krishnamurthy, Chandra Kiran B. & Kriström, Bengt, 2015. "A cross-country analysis of residential electricity demand in 11 OECD-countries," Resource and Energy Economics, Elsevier, vol. 39(C), pages 68-88.
    17. Marta Suárez-Varela & Roberto Martínez-Espiñeira, 2018. "A proposal for the analysis of price escalation within water tariffs: The impact of the Water Framework Directive in Spain," Environment and Planning C, , vol. 36(4), pages 726-749, June.
    18. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    19. Choumert, Johanna & Stage, Jesper & Uwera, Claudine, 2014. "Access to water as determinant of rental values: A housing hedonic analysis in Rwanda," Journal of Housing Economics, Elsevier, vol. 26(C), pages 48-54.
    20. Céline Nauges & Dale Whittington, 2019. "Social Norms Information Treatments in the Municipal Water Supply Sector: Some New Insights on Benefits and Costs," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-40, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:wdevel:v:91:y:2017:i:c:p:125-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/worlddev .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.