IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v15y2008i5p283-290.html
   My bibliography  Save this article

Transport policy in Dutch election manifestos: Estimating the environmental impact

Author

Listed:
  • Annema, Jan Anne
  • van Wee, Bert

Abstract

It has become a tradition in the Netherlands to assess the environmental impact of election manifestos produced by Dutch political parties. This paper shows that the assessment methodology chosen for transport policy proposals can lead to uncertain estimates. However, election manifesto transport analysis can meritably establish which election manifesto offers the most--and which the least--environmental impact, a robust result that does not mislead the public. The pros and cons of assessing election manifestos have been fiercely debated in the Netherlands. Following this debate and our own observations we conclude that another important merit of assessment is that it can assist political parties in making their election promises realistic and consistent.

Suggested Citation

  • Annema, Jan Anne & van Wee, Bert, 2008. "Transport policy in Dutch election manifestos: Estimating the environmental impact," Transport Policy, Elsevier, vol. 15(5), pages 283-290, September.
  • Handle: RePEc:eee:trapol:v:15:y:2008:i:5:p:283-290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967-070X(08)00044-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dargay, Joyce & Gately, Dermot, 1997. "The demand for transportation fuels: Imperfect price-reversibility?," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 71-82, February.
    2. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    3. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    4. Schafer, Andreas, 1998. "The global demand for motorized mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(6), pages 455-477, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    2. Shaw, Charles, 2020. "Econometric Analysis of Demand for Petrol in India, 1966-2019," MPRA Paper 104797, University Library of Munich, Germany.
    3. Yang, Dujuan & Timmermans, Harry, 2013. "Analysis of influence of fuel price on individual activity-travel time expenditure," Transport Policy, Elsevier, vol. 30(C), pages 40-55.
    4. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    5. Van Ommeren, Jos & Rietveld, Piet, 2005. "The commuting time paradox," Journal of Urban Economics, Elsevier, vol. 58(3), pages 437-454, November.
    6. Girod, Bastien & van Vuuren, Detlef P. & Deetman, Sebastiaan, 2012. "Global travel within the 2°C climate target," Energy Policy, Elsevier, vol. 45(C), pages 152-166.
    7. Longden, Thomas, 2014. "Travel intensity and climate policy: The influence of different mobility futures on the diffusion of battery integrated vehicles," Energy Policy, Elsevier, vol. 72(C), pages 219-234.
    8. Singh, Sanjay Kumar, 2006. "Future mobility in India: Implications for energy demand and CO2 emission," Transport Policy, Elsevier, vol. 13(5), pages 398-412, September.
    9. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    10. Lyons, Glenn & Urry, John, 2005. "Travel time use in the information age," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 257-276.
    11. Gallo, Mariano, 2011. "A fuel surcharge policy for reducing road traffic greenhouse gas emissions," Transport Policy, Elsevier, vol. 18(2), pages 413-424, March.
    12. Vincent Viguié, 2015. "Cross-commuting and housing prices in a polycentric modeling of cities," Policy Papers 2015.03, FAERE - French Association of Environmental and Resource Economists.
    13. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    14. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    15. Robert V. Breunig & Carol Gisz, 2009. "An Exploration of Australian Petrol Demand: Unobservable Habits, Irreversibility and Some Updated Estimates," The Economic Record, The Economic Society of Australia, vol. 85(268), pages 73-91, March.
    16. Chi, Junwook, 2018. "Imperfect reversibility of fuel demand for road transport: Asymmetric and hysteretic effects of income and price changes in Korea," Transport Policy, Elsevier, vol. 71(C), pages 116-125.
    17. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    18. Karplus, Valerie J. & Paltsev, Sergey & Babiker, Mustafa & Reilly, John M., 2013. "Applying engineering and fleet detail to represent passenger vehicle transport in a computable general equilibrium model," Economic Modelling, Elsevier, vol. 30(C), pages 295-305.
    19. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    20. Diana Reckien & Maren Ewald & Ottmar Edenhofer & Matthias K. B. Liideke, 2007. "What Parameters Influence the Spatial Variations in CO2 Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2 Emissions," Urban Studies, Urban Studies Journal Limited, vol. 44(2), pages 339-355, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:15:y:2008:i:5:p:283-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.