IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v25y1991i2-3p143-161.html
   My bibliography  Save this article

Dynamic traffic assignment for urban road networks

Author

Listed:
  • Janson, Bruce N.

Abstract

This paper presents a nonlinear programming formulation of the dynamic user-equilibrium assignment problem (DUE) for urban road networks with multiple trip origins and destinations. DUE is a temporal generalization of the static user-equilibrium assignment problem (SUE) with additional constraints to insure temporally continuous paths of flow. In DUE, the full assignment period of several hours is discretized into shorter time intervals of 10-15 minutes each for which trip departure matrices are assumed to be known. This formulation of DUE includes SUE as a special case in which there is only one time interval for the full assignment period. The assumption of steady-state flows allows SUE to have all linear constraints, but DUE requires nonlinear flow continuity constraints. Whereas SUE is typically solved by methods of linear combinations, these methods create temporally discontinuous flows if applied to DUE. A dynamic traffic assignment heuristic (DTA) is presented that generates approximate solutions to DUE in an efficient manner for large networks. DTA is not a convergent solution algorithm for DUE, but was designed instead to produce assignments that approximate the DUE optimality conditions. An overview of alternative dynamic assignment approaches is given, including the limitations of other optimization and simulation approaches. Test results presented in this paper show that DTA generates both static and dynamic assignments that approximately satisfy the user-equilibrium conditions of these problems.

Suggested Citation

  • Janson, Bruce N., 1991. "Dynamic traffic assignment for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 25(2-3), pages 143-161.
  • Handle: RePEc:eee:transb:v:25:y:1991:i:2-3:p:143-161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(91)90020-J
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:25:y:1991:i:2-3:p:143-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.