Advanced Search
MyIDEAS: Login to save this article or follow this journal

Continuous equilibrium network design models

Contents:

Author Info

  • Abdulaal, Mustafa
  • LeBlanc, Larry J.
Registered author(s):

    Abstract

    It is known that the network design problem with the assumption of user optimal flows can be modeled as a 0-1 mixed integer programming problem. Instead, we formulate the network design problem with continuous investment variables subject to equilibrium assignment as a nonlinear optimization problem. We show that this optimization problem is equivalent to an unconstrained problem which we solve by direct search techniques. For convex investment cost functions, the performance of both Powell's method and the method of Hooke and Jeeves is approximately the same with respect to computational requirements for a 24 node, 76 arc network. For the case of concave investment functions, Hooke and Jeeves was superior. The solution to the concave continuous model was very similar to that of the 0-1 model. Furthermore, the required solution time was far less than that required by the corresponding discrete model of the same network. The advantages and disadvantages of the continuous approach as well as the computational requirements are discussed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V99-466FHJ7-4/2/1bc77964b1cecf112df56bd089627ef8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 13 (1979)
    Issue (Month): 1 (March)
    Pages: 19-32

    as in new window
    Handle: RePEc:eee:transb:v:13:y:1979:i:1:p:19-32

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Yu Nie & H. Zhang, 2010. "A Relaxation Approach for Estimating Origin–Destination Trip Tables," Networks and Spatial Economics, Springer, vol. 10(1), pages 147-172, March.
    2. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    3. Dung-Ying Lin & Ampol Karoonsoontawong & S. Waller, 2011. "A Dantzig-Wolfe Decomposition Based Heuristic Scheme for Bi-level Dynamic Network Design Problem," Networks and Spatial Economics, Springer, vol. 11(1), pages 101-126, March.
    4. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    5. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    6. Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
    7. Enrique Fernández L., J. & de Cea Ch., Joaquin & Malbran, R. Henry, 2008. "Demand responsive urban public transport system design: Methodology and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 951-972, August.
    8. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    9. Satish Ukkusuri & S. Waller, 2008. "Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions," Networks and Spatial Economics, Springer, vol. 8(4), pages 383-406, December.
    10. Snelder, M. & Wagelmans, A.P.M. & Schrijver, J.M. & van Zuylen, H.J. & Immers, L.H., 2005. "Optimal redesign of the Dutch road network," Econometric Institute Research Papers EI 2005-55, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Optimal selection of build–operate-transfer projects on transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1699-1709.
    12. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    13. Yang, Hai & Bell, Michael G. H., 2001. "Transport bilevel programming problems: recent methodological advances," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 1-4, January.
    14. Byung Chung & Tao Yao & Chi Xie & Andreas Thorsen, 2011. "Robust Optimization Model for a Dynamic Network Design Problem Under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 11(2), pages 371-389, June.
    15. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    16. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    17. Chen, Yuh-Wen & Tzeng, Gwo-Hshiung, 2001. "Using fuzzy integral for evaluating subjectively perceived travel costs in a traffic assignment model," European Journal of Operational Research, Elsevier, vol. 130(3), pages 653-664, May.
    18. Gao, Ziyou & Wu, Jianjun & Sun, Huijun, 2005. "Solution algorithm for the bi-level discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(6), pages 479-495, July.
    19. Ferrari, Paolo, 1999. "A model of urban transport management," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 43-61, February.
    20. Lo, Hong K. & Szeto, W.Y., 2009. "Time-dependent transport network design under cost-recovery," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 142-158, January.
    21. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    22. Bar-Gera, Hillel & Hellman, Fredrik & Patriksson, Michael, 2013. "Computational precision of traffic equilibria sensitivities in automatic network design and road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 485-500.
    23. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    24. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:13:y:1979:i:1:p:19-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.