IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v88y2016icp209-222.html
   My bibliography  Save this article

Feeder-trunk or direct lines? Economies of density, transfer costs and transit structure in an urban context

Author

Listed:
  • Gschwender, Antonio
  • Jara-Díaz, Sergio
  • Bravo, Claudia

Abstract

A feeder-trunk scheme has been labeled as superior in urban areas due to the presence of economies of density (decreasing average operating cost) along the avenues served by trunk lines. We compare this structure against three types of direct lines structures (no transfers) to serve a stylized public transport network where several flows converge into a main avenue, simultaneously optimizing fleet and vehicle sizes considering both users’ and operators’ costs. The best structure is shown to depend not only on the total passenger volume but also on demand imbalance, demand dispersion in the origins and the length of the trunk line. The region where the feeder-trunk structure dominates depends largely on the value assigned to the pure transfer penalty.

Suggested Citation

  • Gschwender, Antonio & Jara-Díaz, Sergio & Bravo, Claudia, 2016. "Feeder-trunk or direct lines? Economies of density, transfer costs and transit structure in an urban context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 209-222.
  • Handle: RePEc:eee:transa:v:88:y:2016:i:c:p:209-222
    DOI: 10.1016/j.tra.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416000471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Kocur & Chris Hendrickson, 1982. "Design of Local Bus Service with Demand Equilibration," Transportation Science, INFORMS, vol. 16(2), pages 149-170, May.
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Jan K. Brueckner, 2004. "Network Structure and Airline Scheduling," Journal of Industrial Economics, Wiley Blackwell, vol. 52(2), pages 291-312, June.
    4. El-Hifnawi, M. B., 2002. "Cross-town bus routes as a solution for decentralized travel: a cost-benefit analysis for Monterrey, Mexico," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(2), pages 127-144, February.
    5. Estrada, M. & Roca-Riu, M. & Badia, H. & Robusté, F. & Daganzo, C.F., 2011. "Design and implementation of efficient transit networks: Procedure, case study and validity test," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 935-950, November.
    6. Sergio Jara-Díaz & Antonio Gschwender & Meisy Ortega, 2014. "The impact of a financial constraint on the spatial structure of public transport services," Transportation, Springer, vol. 41(1), pages 21-36, January.
    7. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    8. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    9. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
    10. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    11. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umberto Petruccelli & Antonello Racina, 2021. "Feeder-trunk and direct-link schemes for public transit: a model to evaluate the produced accessibility," Public Transport, Springer, vol. 13(2), pages 301-323, June.
    2. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    3. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Börjesson, Maria & Eliasson, Jonas & Rubensson, Isak, 2020. "Distributional effects of public transport subsidies," Journal of Transport Geography, Elsevier, vol. 84(C).
    5. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    6. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2016. "Optimal public transport networks for a general urban structure," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 298-313.
    7. Jara-Díaz, Sergio R. & Muñoz-Paulsen, Esteban, 2022. "Lessons from the strategic design of a bimodal public transport system on a linear city," Research in Transportation Economics, Elsevier, vol. 94(C).
    8. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    9. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    10. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    11. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    12. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    13. Sergio Jara-Díaz & Antonio Gschwender & Claudia Bravo, 2018. "Total cost minimizing transit route structures considering trips towards CBD and periphery," Transportation, Springer, vol. 45(6), pages 1701-1720, November.
    14. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    15. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    16. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    17. Jara-Diaz, Sergio & Monzon, Andres & Cascajo, Rocio & Garcia-Martinez, Andres, 2022. "An international time equivalency of the pure transfer penalty in urban transit trips: Closing the gap," Transport Policy, Elsevier, vol. 125(C), pages 48-55.
    18. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
    20. Traut, Elizabeth J. & Steinfeld, Aaron, 2019. "Identifying commonly used and potentially unsafe transit transfers with crowdsourcing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 99-111.
    21. Zakharenko, Roman & Luttmann, Alexander, 2023. "Downsizing the jet: A forecast of economic effects of increased automation in aviation," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 25-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Jara-Díaz & Antonio Gschwender & Claudia Bravo, 2018. "Total cost minimizing transit route structures considering trips towards CBD and periphery," Transportation, Springer, vol. 45(6), pages 1701-1720, November.
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    4. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    5. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    6. Moccia, Luigi & Giallombardo, Giovanni & Laporte, Gilbert, 2017. "Models for technology choice in a transit corridor with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 733-756.
    7. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    9. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    10. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    11. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2016. "Optimal public transport networks for a general urban structure," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 298-313.
    12. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2016. "Bus network structure and mobility pattern: A monocentric analytical approach on a grid street layout," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 37-56.
    13. Luo, Sida & Nie, Yu (Marco), 2019. "Impact of ride-pooling on the nature of transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 175-192.
    14. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    15. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    16. Hugo Badia, 2020. "Comparison of Bus Network Structures in Face of Urban Dispersion for a Ring-Radial City," Networks and Spatial Economics, Springer, vol. 20(1), pages 233-271, March.
    17. Sergio Jara-Díaz & Antonio Gschwender & Meisy Ortega, 2014. "The impact of a financial constraint on the spatial structure of public transport services," Transportation, Springer, vol. 41(1), pages 21-36, January.
    18. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    19. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    20. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:88:y:2016:i:c:p:209-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.