IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v42y2008i6p922-934.html
   My bibliography  Save this article

Implementing a multi-vehicle multi-route spatial decision support system for efficient trash collection in Portugal

Author

Listed:
  • Santos, Lui­s
  • Coutinho-Rodrigues, João
  • Current, John R.

Abstract

More efficient vehicle routing can improve a firm's competitive advantage or increase the efficiency by which governmental agencies supply public services. More efficient routing can also reduce traffic congestion and air pollution which are growing problems in many urban areas. Unfortunately, the identification of the optimal solution to most vehicle routing problems is computationally intractable. This article presents a user-friendly spatial decision support system (SDSS) to generate vehicle routes for multiple-vehicle routing problems that serve demand located along arcs and at nodes of the transportation network. The SDSS incorporates a geographical information system (GIS) and heuristic solution procedures to generate routes, system-wide data, and maps, as well as individual vehicle route maps, directions, and data quickly. It accommodates realistic system specifics such as vehicle capacity and time constraints and network constraints such as one-way streets, and prohibited turns. The system was tested for trash collection in Coimbra, Portugal. In addition, the SDSS can be used for "what-if" analysis related to possible changes to input parameters such as vehicle capacity and maximum driving time.

Suggested Citation

  • Santos, Lui­s & Coutinho-Rodrigues, João & Current, John R., 2008. "Implementing a multi-vehicle multi-route spatial decision support system for efficient trash collection in Portugal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 922-934, July.
  • Handle: RePEc:eee:transa:v:42:y:2008:i:6:p:922-934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(08)00043-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jha, Manoj K. & Schonfeld, Paul, 2004. "A highway alignment optimization model using geographic information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 455-481, July.
    2. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    3. Ülengin, Füsun & Önsel, Sule & Ilker Topçu, Y. & Aktas, Emel & Kabak, Özgür, 2007. "An integrated transportation decision support system for transportation policy decisions: The case of Turkey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 80-97, January.
    4. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    5. Dablanc, Laetitia, 2007. "Goods transport in large European cities: Difficult to organize, difficult to modernize," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 280-285, March.
    6. Philippe Lacomme & Christian Prins & Wahiba Ramdane-Cherif, 2004. "Competitive Memetic Algorithms for Arc Routing Problems," Annals of Operations Research, Springer, vol. 131(1), pages 159-185, October.
    7. Christofides, Nicos, 1973. "The optimum traversal of a graph," Omega, Elsevier, vol. 1(6), pages 719-732, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    2. Santos, Luís & Coutinho-Rodrigues, João & Current, John R., 2010. "An improved ant colony optimization based algorithm for the capacitated arc routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 246-266, February.
    3. Meisel, Frank & Thiele, Nicole, 2014. "Where to dispose of urban green waste? Transportation planning for the maintenance of public green spaces," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 147-162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    2. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    3. Petersen, E. R. & Taylor, A. J., 2001. "An investment planning model for a new North-Central railway in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 847-862, November.
    4. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.
    5. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    6. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    7. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    8. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    9. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    10. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.
    11. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    12. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    13. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    14. Nader Naderializadeh & Kevin A. Crowe, 2020. "Formulating the integrated forest harvest-scheduling model to reduce the cost of the road-networks," Operational Research, Springer, vol. 20(4), pages 2283-2306, December.
    15. Olcay Polat & Duygu Topaloğlu, 2022. "Collection of different types of milk with multi-tank tankers under uncertainty: a real case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-33, April.
    16. Melkote, Sanjay & Daskin, Mark S., 2001. "Capacitated facility location/network design problems," European Journal of Operational Research, Elsevier, vol. 129(3), pages 481-495, March.
    17. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    18. Pedro A. P. Dias & Hugo Yoshizaki & Patricia Favero & Jose Geraldo Vidal Vieira, 2019. "Daytime or Overnight Deliveries? Perceptions of Drivers and Retailers in São Paulo City," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    19. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    20. Yang, Chao & Chen, Mingyang & Yuan, Quan, 2021. "The geography of freight-related accidents in the era of E-commerce: Evidence from the Los Angeles metropolitan area," Journal of Transport Geography, Elsevier, vol. 92(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:42:y:2008:i:6:p:922-934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.