IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v42y2008i2p360-375.html
   My bibliography  Save this article

Validation of TASHA: A 24-h activity scheduling microsimulation model

Author

Listed:
  • Roorda, Matthew J.
  • Miller, Eric J.
  • Habib, Khandker M.N.

Abstract

The objective of this paper is to verify/validate the results of an application of the Travel Activity Scheduler for Household Agents (TASHA) in the Greater Toronto Area (GTA), Canada. Activity generation and scheduling components of TASHA are validated using 1996 and 2001 travel survey data for the GTA. This validation proceeds in two parts: (a) verification that TASHA replicates the 1996 base case upon which the model was originally built; and (b) comparison of TASHA's forecasts of 2001 daily travel behaviour with observed travel survey data for 2001. TASHA activity generation and scheduling model components replicate observed activities with good accuracy and precision for the base year. Although TASHA is not able to predict an observed increase in activity participation rate in a five year forecast, the distribution of activities in the day is forecast with greater success. Predictions of average travel distance are oversimulated in the base year by 0.9%. Increased average distances are underpredicted for school, shopping, and other activities, and are overpredicted for work and return home activities. These validation results are promising, although there exist opportunities to improve model performance, and to further validate other elements of the TASHA model.

Suggested Citation

  • Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
  • Handle: RePEc:eee:transa:v:42:y:2008:i:2:p:360-375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(07)00092-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vrtic, M. & Fröhlich, P. & Schüssler, N. & Axhausen, K.W. & Lohse, D. & Schiller, C. & Teichert, H., 2007. "Two-dimensionally constrained disaggregate trip generation, distribution and mode choice model: Theory and application for a Swiss national model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 857-873, November.
    2. Ettema, Dick & Bastin, Fabian & Polak, John & Ashiru, Olu, 2007. "Modelling the joint choice of activity timing and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 827-841, November.
    3. Davidson, William & Donnelly, Robert & Vovsha, Peter & Freedman, Joel & Ruegg, Steve & Hicks, Jim & Castiglione, Joe & Picado, Rosella, 2007. "Synthesis of first practices and operational research approaches in activity-based travel demand modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 464-488, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    2. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    3. Souche, Stéphanie, 2009. "Un exemple d’estimation de la demande de transport urbain," Revue d'économie régionale et urbaine, Editions NecPlus, vol. 2009(04), pages 759-779, December.
    4. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    5. Katrien Ramaekers & Sofie Reumers & Geert Wets & Mario Cools, 2013. "Modelling Route Choice Decisions of Car Travellers Using Combined GPS and Diary Data," Networks and Spatial Economics, Springer, vol. 13(3), pages 351-372, September.
    6. Souche, Stéphanie, 2010. "Measuring the structural determinants of urban travel demand," Transport Policy, Elsevier, vol. 17(3), pages 127-134, May.
    7. Xuemei Fu & Zhicai Juan, 2017. "An integrated framework to jointly model decisions of activity time allocation and work-related travel," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 689-705, August.
    8. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    9. Pawlak, Jacek & Polak, John W. & Sivakumar, Aruna, 2017. "A framework for joint modelling of activity choice, duration, and productivity while travelling," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 153-172.
    10. Ho, Chinh Q. & Hensher, David A., 2016. "A workplace choice model accounting for spatial competition and agglomeration effects," Journal of Transport Geography, Elsevier, vol. 51(C), pages 193-203.
    11. Ali Najmi & Taha H. Rashidi & Eric J. Miller, 2019. "A novel approach for systematically calibrating transport planning model systems," Transportation, Springer, vol. 46(5), pages 1915-1950, October.
    12. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    13. Ganić, Emir & Rajé, Fiona & van Oosten, Nico, 2023. "New perspectives on spatial and temporal aspects of aircraft noise: Dynamic noise maps for Heathrow airport," Journal of Transport Geography, Elsevier, vol. 106(C).
    14. Truschkin, Eugen & Elbert, Ralf, 2013. "Horizontal transshipment technologies as enablers of combined transport: Impact of transport policies on the modal split," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 91-109.
    15. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    16. Thomas, Tom & Tutert, Bas, 2015. "Route choice behavior in a radial structured urban network: Do people choose the orbital or the route through the city center?," Journal of Transport Geography, Elsevier, vol. 48(C), pages 85-95.
    17. Bao, Yue & Xiao, Feng & Gao, Zaihan & Gao, Ziyou, 2017. "Investigation of the traffic congestion during public holiday and the impact of the toll-exemption policy," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 58-81.
    18. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    19. Ali Najmi & Taha H. Rashidi & James Vaughan & Eric J. Miller, 2020. "Calibration of large-scale transport planning models: a structured approach," Transportation, Springer, vol. 47(4), pages 1867-1905, August.
    20. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:42:y:2008:i:2:p:360-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.