IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v40y2006i6p491-506.html
   My bibliography  Save this article

Evaluating the significance of highway network links under the flood damage: An accessibility approach

Author

Listed:
  • Sohn, Jungyul

Abstract

This paper conducts an analysis to assess the significance of highway network links in Maryland under flood damage. An accessibility index is derived to incorporate the distance-decay effect and the volume of traffic influence on the transportation network. The accessibility level of individual counties and the state as a whole is checked before and after the hypothetical disruption of individual links within the floodplain. The results indicate that critical links identified based on the distance-only and the distance-traffic volume criteria appear to be different, implying that the priority of retrofit might also vary depending on what criterion to choose. The percentage loss of accessibility due to the disruption of a link is generally greater in the latter. However, distance-only consideration results in a more prominent spatial distribution pattern of links in percentage loss induced. Some links remain significant in both cases. Especially if the disruption of a certain link does not have an alternative solution (for example, if the link is the only way in and out of a certain county) and if counties connected by the link are low accessibility counties, the two criteria may produce a similar outcome.

Suggested Citation

  • Sohn, Jungyul, 2006. "Evaluating the significance of highway network links under the flood damage: An accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 491-506, July.
  • Handle: RePEc:eee:transa:v:40:y:2006:i:6:p:491-506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(05)00116-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atthanan Lekuthai & Suphat Vongvisessomjai, 2001. "Intangible Flood Damage Quantification," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(5), pages 343-362, October.
    2. Tschangho John Kim & Heejoo Ham & David E. Boyce, 2002. "Economic impacts of transportation network changes: Implementation of a combined transportation network and input-output model," Review of Economic Design, Springer;Society for Economic Design, vol. 81(2), pages 223-246, April.
    3. Tschangho John Kim & Heejoo Ham & David E. Boyce, 2002. "Economic impacts of transportation network changes: Implementation of a combined transportation network and input-output model," Economics of Governance, Springer, vol. 81(2), pages 223-246, April.
    4. Heejoo Ham & Tschangho John Kim & David E. Boyce, 2002. "Economic impacts of transportation network changes: Implementation of a combined transportation network and input-output model," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(2), pages 223-246.
    5. Jungyul Sohn & Geoffrey J. D. Hewings & Tschangho John Kim & Jong Sung Lee & Sung-Gheel Jang, 2004. "Analysis of Economic Impacts of an Earthquake on Transportation Network," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 12, pages 233-256, Springer.
    6. Chang, Stephanie E. & Nojima, Nobuoto, 2001. "Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 475-494, July.
    7. Francisco Correia & Maria Da graça saraiva & Fernando Da Silva & Isabel Ramos, 1999. "Floodplain Management in Urban Developing Areas. Part I. Urban Growth Scenarios and Land-Use Controls," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(1), pages 1-21, February.
    8. Francisco Nunes Correia & Filipe Castro Rego & Maria Da Grača Saraiva & Isabel Ramos, 1998. "Coupling GIS with Hydrologic and Hydraulic Flood Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(3), pages 229-249, June.
    9. Sungbin Cho & Peter Gordon & Harry W. Richardson & James E. Moore & Masanobu Shinozuka, 2000. "Analyzing Transportation Reconstruction Network Strategies: A Full Cost Approach," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 12(3), pages 212-227, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.
    2. Özdamar, Linet & Tüzün Aksu, Dilek & Ergüneş, Biket, 2014. "Coordinating debris cleanup operations in post disaster road networks," Socio-Economic Planning Sciences, Elsevier, vol. 48(4), pages 249-262.
    3. Euijune Kim & Geoffrey J.D. Hewings & Hidayat Amir, 2015. "Project Evaluation of Transportation Projects: an Application of Financial Computable General Equilibrium Model," ERSA conference papers ersa15p453, European Regional Science Association.
    4. Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
    5. Euijune Kim & Geoffrey Hewings & Chowoon Hong, 2004. "An Application of an Integrated Transport Network- Multiregional CGE Model: a Framework for the Economic Analysis of Highway Projects," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 235-258.
    6. Michiyuki Yagi & Shigemi Kagawa & Shunsuke Managi & Hidemichi Fujii & Dabo Guan, 2020. "Supply Constraint from Earthquakes in Japan in Input–Output Analysis," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1811-1830, September.
    7. Danczyk, Adam & Di, Xuan & Liu, Henry X. & Levinson, David M., 2017. "Unexpected versus expected network disruption: Effects on travel behavior," Transport Policy, Elsevier, vol. 57(C), pages 68-78.
    8. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    9. Tomoki Ishikura & Fuga Yokoyama, 2022. "Regional economic effects of the Ring Road project in the Greater Tokyo Area: A spatial CGE approach," Papers in Regional Science, Wiley Blackwell, vol. 101(4), pages 811-837, August.
    10. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    11. Yantao Huang & Kara M. Kockelman, 2020. "What will autonomous trucking do to U.S. trade flows? Application of the random-utility-based multi-regional input–output model," Transportation, Springer, vol. 47(5), pages 2529-2556, October.
    12. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    13. Haitao Yu, 2018. "A review of input–output models on multisectoral modelling of transportation–economic linkages," Transport Reviews, Taylor & Francis Journals, vol. 38(5), pages 654-677, September.
    14. Ichihara, Silvio Massaru & Guilhoto, Joaquim José Martins & Imori, Denise, 2009. "Combining geoprocessing and interregional input-output systems: An application to the State of São Paulo in Brazil," MPRA Paper 30696, University Library of Munich, Germany.
    15. Giuseppe Francesco Gori & Renato Paniccià, 2015. "A structural multisectoral model with new economic geography linkages for Tuscany," Papers in Regional Science, Wiley Blackwell, vol. 94, pages 175-196, November.
    16. Jie Zhang & Meng Lu & Lulu Zhang & Yadong Xue, 2021. "Assessing indirect economic losses of landslides along highways," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2775-2796, April.
    17. Ichihara, Silvio Massaru & Guilhoto, Joaquim José Martins & Imori, Denise, 2008. "Geoprocessing and estimation of interregional input-output systems an application to the state of Sao Paulo in Brazil," MPRA Paper 54036, University Library of Munich, Germany.
    18. Ham, Heejoo & Kim, Tschangho John & Boyce, David, 2005. "Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 65-79, January.
    19. Leurent, Fabien & Windisch, Elisabeth, 2015. "Benefits and costs of electric vehicles for the public finances: An integrated valuation model based on input–output analysis, with application to France," Research in Transportation Economics, Elsevier, vol. 50(C), pages 51-62.
    20. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:40:y:2006:i:6:p:491-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.