Advanced Search
MyIDEAS: Login to save this article or follow this journal

Dynamic solution to the ground-holding problem in air traffic control


Author Info

  • Richetta, Octavio
  • Odoni, Amedeo R.
Registered author(s):


    Existing probabilistic solutions to the ground-holding problem in air traffic control are of a static nature, with ground-holds assigned to aircraft at the beginning of daily operations. In this paper we present an optimal dynamic solution that simplifies the structure of the control mechanism by exercising ground-holding on groups of aircraft instead of individual flights. Using stochastic linear programming with recourse, we have been able to solve problem instances for one of the largest airports in the U.S. with just a powerful PC. We illustrate the advantage of the probabilistic dynamic solution over: (a) the static solution; (b) a deterministic solution; and (c) the passive strategy of no ground-holding.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Transportation Research Part A: Policy and Practice.

    Volume (Year): 28 (1994)
    Issue (Month): 3 (May)
    Pages: 167-185

    as in new window
    Handle: RePEc:eee:transa:v:28:y:1994:i:3:p:167-185

    Contact details of provider:
    Web page:

    Order Information:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Stojkovic, Goran & Soumis, Fran├žois & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, Elsevier, vol. 36(9), pages 779-788, November.
    2. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 59(C), pages 22-44.
    3. Caccavale, Maria Virginia & Iovanella, Antonio & Lancia, Carlo & Lulli, Guglielmo & Scoppola, Benedetto, 2014. "A model of inbound air traffic: The application to Heathrow airport," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 116-122.
    4. Mukherjee, Avijit, 2004. "Dynamic Stochastic Optimization Models for Air Traffic Flow Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2vk8w6nc, Institute of Transportation Studies, UC Berkeley.
    5. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 42(7-8), pages 685-702, August.
    6. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 42(2), pages 113-134, February.
    7. Mukherjee, Avijit & Hansen, Mark, 2009. "A dynamic rerouting model for air traffic flow management," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 43(1), pages 159-171, January.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:28:y:1994:i:3:p:167-185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.