IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v151y2020ics0040162518320134.html
   My bibliography  Save this article

Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model

Author

Listed:
  • Zhang, Shuwei
  • Bauer, Nico
  • Yin, Guangzhi
  • Xie, Xi

Abstract

Empirical studies on technology advancement and regional diffusion indicate that technology learning is a multi-scale process driven by factors such as globally traded equipment and local accumulation of experience. This understanding should be incorporated in energy-economy models to improve the model representation and policy recommendations. The present study augments the large-scale, integrated assessment model REMIND for this purpose. To answer the research question on how multi-level learning affects technology diffusion and the regional costs of mitigation policies, alternative variants of multi-scale learning are implemented and calibrated to one set of regional-specific cost data. The results show that purely local learning leads to similar technology diffusion patterns as fully global learning, since the learning rates are set equal, and all regions are calibrated to their cost levels and specific capacity. Relative to these two, the combination of global and local learning leads to slower deployment of learning technologies and increases the mitigation cost if the cost disparity persists across regions, e.g. due to incomplete spillover. Our modelling exercise suggests that the choice of learning rates at different levels matter and calls for better data quality.

Suggested Citation

  • Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:tefoso:v:151:y:2020:i:c:s0040162518320134
    DOI: 10.1016/j.techfore.2019.119765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518320134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.119765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    2. Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
    3. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    4. Bertrand Magne, Socrates Kypreos, and Hal Turton, 2010. "Technology Options for Low Stabilization Pathways with MERGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    5. Schmid, Eva & Knopf, Brigitte & Bauer, Nico, 2012. "REMIND-D: A Hybrid Energy-Economy Model of Germany," Climate Change and Sustainable Development 121911, Fondazione Eni Enrico Mattei (FEEM).
    6. Patrice Bougette and Christophe Charlier, 2018. "Antidumping and Feed-In Tariffs as Good Buddies? Modeling the EU-China Solar Panel Dispute," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    7. Fredrik Hedenus, Christian Azar and Kristian Lindgren, 2006. "Induced Technological Change in a Limited Foresight Optimization Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-122.
    8. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    9. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
    10. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    11. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    12. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    13. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    14. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    15. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Shafiei, Ehsan & Saboohi, Yadollah & Ghofrani, Mohammad B., 2009. "Impact of innovation programs on development of energy system: Case of Iranian electricity-supply system," Energy Policy, Elsevier, vol. 37(6), pages 2221-2230, June.
    18. Joanna I. Lewis, 2014. "The Rise of Renewable Energy Protectionism: Emerging Trade Conflicts and Implications for Low Carbon Development," Global Environmental Politics, MIT Press, vol. 14(4), pages 10-35, November.
    19. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    20. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    21. Nico Bauer & Ottmar Edenhofer & Socrates Kypreos, 2008. "Linking energy system and macroeconomic growth models," Computational Management Science, Springer, vol. 5(1), pages 95-117, February.
    22. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    23. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    24. Elmar Kriegler & John Weyant & Geoffrey Blanford & Volker Krey & Leon Clarke & Jae Edmonds & Allen Fawcett & Gunnar Luderer & Keywan Riahi & Richard Richels & Steven Rose & Massimo Tavoni & Detlef Vuu, 2014. "The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies," Climatic Change, Springer, vol. 123(3), pages 353-367, April.
    25. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    26. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    27. Nico Bauer & Lavinia Baumstark & Marian Leimbach, 2012. "The REMIND-R model: the role of renewables in the low-carbon transformation—first-best vs. second-best worlds," Climatic Change, Springer, vol. 114(1), pages 145-168, September.
    28. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    29. Winskel, Mark & Markusson, Nils & Jeffrey, Henry & Candelise, Chiara & Dutton, Geoff & Howarth, Paul & Jablonski, Sophie & Kalyvas, Christos & Ward, David, 2014. "Learning pathways for energy supply technologies: Bridging between innovation studies and learning rates," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 96-114.
    30. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    31. Anselm Schultes & Marian Leimbach & Gunnar Luderer & Robert C. Pietzcker & Lavinia Baumstark & Nico Bauer & Elmar Kriegler & Ottmar Edenhofer, 2018. "Optimal international technology cooperation for the low-carbon transformation," Climate Policy, Taylor & Francis Journals, vol. 18(9), pages 1165-1176, October.
    32. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    33. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    34. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    35. Gerlagh, Reyer & Kuik, Onno, 2014. "Spill or leak? Carbon leakage with international technology spillovers: A CGE analysis," Energy Economics, Elsevier, vol. 45(C), pages 381-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simplice A. Asongu, 2021. "The Effects of Mobile Phone Technology, Knowledge Creation and Diffusion on Inclusive Human Development in Sub-Saharan Africa," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1367-1398, September.
    2. Simplice A. Asongu & Mushfiqur Rahman & Joseph Nnanna & Mohamed Haffar, 2020. "Enhancing Information Technology for Value Added Across Economic Sectors in Sub-Saharan Africa," Research Africa Network Working Papers 20/064, Research Africa Network (RAN).
    3. Larissa Nogueira & Francesco Dalla Longa & Lara Aleluia Reis & Laurent Drouet & Zoi Vrontisi & Kostas Fragkiadakis & Evangelos Panos & Bob Zwaan, 2023. "A multi-model framework to assess the role of R&D towards a decarbonized energy system," Climatic Change, Springer, vol. 176(7), pages 1-22, July.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Asongu, Simplice A & Odhiambo, Nicholas M, 2023. "Information technology, inequality and adult literacy in developing countries," Working Papers 29843, University of South Africa, Department of Economics.
    6. Vu, Khuong M & Asongu, Simplice, 2020. "Backwardness advantage and economic growth in the information age: A cross-country empirical study," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    7. Asongu, Simplice A. & Rahman, Mushfiqur & Nnanna, Joseph & Haffar, Mohamed, 2020. "Enhancing information technology for value added across economic sectors in Sub-Saharan Africa✰," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Deepti Aggrawal & Adarsh Anand & Gunjan Bansal & Gareth H. Davies & Parisa Maroufkhani & Yogesh K. Dwivedi, 2022. "RETRACTED ARTICLE: Modelling product lines diffusion: a framework incorporating competitive brands for sustainable innovations," Operations Management Research, Springer, vol. 15(3), pages 760-772, December.
    9. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    2. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    3. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    4. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    5. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    6. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    7. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    8. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    9. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    10. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    11. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    12. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    13. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    14. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    15. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    16. Marian Leimbach & Anselm Schultes & Lavinia Baumstark & Anastasis Giannousakis & Gunnar Luderer, 2017. "Solution algorithms for regional interactions in large-scale integrated assessment models of climate change," Annals of Operations Research, Springer, vol. 255(1), pages 29-45, August.
    17. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    18. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
    19. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    20. Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:151:y:2020:i:c:s0040162518320134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.