IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v146y2019icp644-654.html
   My bibliography  Save this article

Early identification of important patents: Design and validation of citation network metrics

Author

Listed:
  • Mariani, Manuel Sebastian
  • Medo, Matúš
  • Lafond, François

Abstract

One of the most challenging problems in technological forecasting is to identify as early as possible those technologies that have the potential to lead to radical changes in our society. In this paper, we use the US patent citation network (1926–2010) to test our ability to early identify a list of expert-selected historically significant patents through citation network analysis. We show that in order to effectively uncover these patents shortly after they are issued, we need to go beyond raw citation counts and take into account both the citation network topology and temporal information. In particular, an age-normalized measure of patent centrality, called rescaled PageRank, allows us to identify the significant patents earlier than citation count and PageRank score. In addition, we find that while high-impact patents tend to rely on other high-impact patents in a similar way as scientific papers, the patents' citation dynamics is significantly slower than that of papers, which makes the early identification of significant patents more challenging than that of significant papers. In the context of technology management, our rescaled metrics can be useful to early detect recent trends in technical improvement, which is of fundamental interest for companies and investors.

Suggested Citation

  • Mariani, Manuel Sebastian & Medo, Matúš & Lafond, François, 2019. "Early identification of important patents: Design and validation of citation network metrics," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 644-654.
  • Handle: RePEc:eee:tefoso:v:146:y:2019:i:c:p:644-654
    DOI: 10.1016/j.techfore.2018.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517314312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    2. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    5. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    6. Mariani, Manuel Sebastian & Medo, Matúš & Zhang, Yi-Cheng, 2016. "Identification of milestone papers through time-balanced network centrality," Journal of Informetrics, Elsevier, vol. 10(4), pages 1207-1223.
    7. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
    8. Leonid Kogan & Dimitris Papanikolaou & Amit Seru & Noah Stoffman, 2017. "Technological Innovation, Resource Allocation, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 665-712.
    9. Gerald Silverberg & Bart Verspagen, 2003. "Breaking the waves: a Poisson regression approach to Schumpeterian clustering of basic innovations," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 27(5), pages 671-693, September.
    10. Fontana, Roberto & Nuvolari, Alessandro & Shimizu, Hiroshi & Vezzulli, Andrea, 2013. "Reassessing patent propensity: Evidence from a dataset of R&D awards, 1977–2004," Research Policy, Elsevier, vol. 42(10), pages 1780-1792.
    11. Adam B. Jaffe & Manuel Trajtenberg & Michael S. Fogarty, 2000. "The Meaning of Patent Citations: Report on the NBER/Case-Western Reserve Survey of Patentees," NBER Working Papers 7631, National Bureau of Economic Research, Inc.
    12. Carolina Castaldi & Koen Frenken & Bart Los, 2015. "Related Variety, Unrelated Variety and Technological Breakthroughs: An analysis of US State-Level Patenting," Regional Studies, Taylor & Francis Journals, vol. 49(5), pages 767-781, May.
    13. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    14. Strumsky, Deborah & Lobo, José, 2015. "Identifying the sources of technological novelty in the process of invention," Research Policy, Elsevier, vol. 44(8), pages 1445-1461.
    15. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    16. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    17. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    18. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    19. François Lafond & Daniel Kim, 2019. "Long-run dynamics of the U.S. patent classification system," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 631-664, April.
    20. Martinelli, Arianna, 2012. "An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry," Research Policy, Elsevier, vol. 41(2), pages 414-429.
    21. Chen, P. & Xie, H. & Maslov, S. & Redner, S., 2007. "Finding scientific gems with Google’s PageRank algorithm," Journal of Informetrics, Elsevier, vol. 1(1), pages 8-15.
    22. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    23. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    24. Jordan A. Comins & Loet Leydesdorff, 2017. "Citation algorithms for identifying research milestones driving biomedical innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1495-1504, March.
    25. Yi Zhang & Yue Qian & Ying Huang & Ying Guo & Guangquan Zhang & Jie Lu, 2017. "An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1925-1946, June.
    26. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    27. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    28. Marianna Epicoco, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Post-Print hal-03381305, HAL.
    29. Manuel Trajtenberg & Adam B. Jaffe & Michael S. Fogarty, 2000. "Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors," American Economic Review, American Economic Association, vol. 90(2), pages 215-218, May.
    30. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    31. Vaccario, Giacomo & Medo, Matúš & Wider, Nicolas & Mariani, Manuel Sebastian, 2017. "Quantifying and suppressing ranking bias in a large citation network," Journal of Informetrics, Elsevier, vol. 11(3), pages 766-782.
    32. Csárdi, Gábor & Strandburg, Katherine J. & Zalányi, László & Tobochnik, Jan & Érdi, Péter, 2007. "Modeling innovation by a kinetic description of the patent citation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 783-793.
    33. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    2. Chand Bhatt, Priyanka & Kumar, Vimal & Lu, Tzu-Chuen & Daim, Tugrul, 2021. "Technology convergence assessment: Case of blockchain within the IR 4.0 platform," Technology in Society, Elsevier, vol. 67(C).
    3. Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    4. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Xipeng Liu & Xinmiao Li, 2022. "Early Identification of Significant Patents Using Heterogeneous Applicant-Citation Networks Based on the Chinese Green Patent Data," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    6. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    7. Higham, Kyle & Contisciani, Martina & De Bacco, Caterina, 2022. "Multilayer patent citation networks: A comprehensive analytical framework for studying explicit technological relationships," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    8. Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    2. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    3. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    4. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    5. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    6. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    7. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Verluise, Cyril & Cristelli, Gabriele & Higham, Kyle & de Rassenfosse, Gaetan, 2020. "The Missing 15 Percent of Patent Citations," SocArXiv x78ys, Center for Open Science.
    9. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    10. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    11. Andreas Reinstaller & Peter Reschenhofer, 2017. "Using PageRank in the analysis of technological progress through patents: an illustration for biotechnological inventions," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1407-1438, December.
    12. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    13. Jonathan H. Ashtor, 2019. "Investigating Cohort Similarity as an Ex Ante Alternative to Patent Forward Citations," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 16(4), pages 848-880, December.
    14. Pierre-Alexandre Balland & David L. Rigby, 2015. "The geography and evolution of complex knowledge," Papers in Evolutionary Economic Geography (PEEG) 1502, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2015.
    15. Seh-Hyun Yoo & Chang-Yang Lee, 2023. "Technological diversification, technology portfolio properties, and R&D productivity," The Journal of Technology Transfer, Springer, vol. 48(6), pages 2074-2105, December.
    16. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    17. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    18. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Capturing the economic value of triadic patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 127-157, January.
    19. Petra Moser & Joerg Ohmstedt & Paul W. Rhode, 2015. "Patent Citations and the Size of the Inventive Step - Evidence from Hybrid Corn," NBER Working Papers 21443, National Bureau of Economic Research, Inc.
    20. Satoshi Yasukawa & Shingo Kano, 2014. "Validating the usefulness of examiners’ forward citations from the viewpoint of applicants’ self-selection during the patent application procedure," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 895-909, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:146:y:2019:i:c:p:644-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.