Advanced Search
MyIDEAS: Login to save this article or follow this journal

Objective Bayesian analysis for a truncated model

Contents:

Author Info

  • Wang, Haiying
  • Sun, Dongchu
Registered author(s):

    Abstract

    In this paper, the reference prior is developed for a truncated model with boundaries of support as two functions of an unknown parameter. It generalizes the result obtained in a recent paper by Berger et al. (2009), in which a rigorous definition of reference priors was proposed and the prior for a uniform distribution with parameter-dependent support was derived. The assumption on the order of the derivatives of these two boundary functions, required by Berger et al. (2009), is removed. In addition, we obtain the frequentist asymptotic distribution of Bayes estimators under the squared error loss function. Comparisons of the Bayesian approach with the frequentist approach are drawn in two examples in detail. Both theoretical and numerical results indicate that the Bayesian approach, especially under the reference prior, is preferable.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002854
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 12 ()
    Pages: 2125-2135

    as in new window
    Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2125-2135

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Asymptotic; Bayes estimator; Non-regular; Reference prior; Truncated model;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Ghosal Subhashis & Samanta Tapas, 1997. "Expansion Of Bayes Risk For Entropy Loss And Reference Prior In Nonregular Cases," Statistics & Risk Modeling, De Gruyter, vol. 15(2), pages 129-140, February.
    2. Peter Hall & Julian Z. Wang, 2005. "Bayesian likelihood methods for estimating the end point of a distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 717-729.
    3. Keisuke Hirano & Jack R. Porter, 2002. "Asymptotic Efficiency in Parametric Structural Models with Parameter-Dependent Support," Harvard Institute of Economic Research Working Papers 1988, Harvard - Institute of Economic Research.
    4. S. Ghosal, 1997. "Reference priors in multiparameter nonregular cases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 6(1), pages 159-186, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2125-2135. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.