Advanced Search
MyIDEAS: Login to save this article or follow this journal

Weighted Frechet means as convex combinations in metric spaces: Properties and generalized median inequalities

Contents:

Author Info

  • Ginestet, Cedric E.
  • Simmons, Andrew
  • Kolaczyk, Eric D.
Registered author(s):

    Abstract

    In this short note, we study the properties of the weighted Frechet mean as a convex combination operator on an arbitrary metric space (Y,d). We show that this binary operator is commutative, non-associative, idempotent, invariant to multiplication by a constant weight and possesses an identity element. We also cover the properties of the weighted cumulative Frechet mean. These tools allow us to derive several types of median inequalities for abstract metric spaces that hold for both negative and positive Alexandrov spaces. In particular, we show through an example that these bounds cannot be improved upon in general metric spaces. For weighted Frechet means, however, such inequalities can solely be derived for weights equal to or greater than one. This latter limitation highlights the inherent difficulties associated with abstract-valued random variables.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002106
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 10 ()
    Pages: 1859-1863

    as in new window
    Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1859-1863

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Abstract-valued random variable; Barycenter; Convex operator; Frechet mean; Median inequality;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. David Balding & Pablo Ferrari & Ricardo Fraiman & Mariela Sued, 2009. "Limit theorems for sequences of random trees," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 18(2), pages 302-315, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1859-1863. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.