Advanced Search
MyIDEAS: Login

Testing the homogeneity of inverse Gaussian scale-like parameters

Contents:

Author Info

  • Chang, Ming
  • You, Xuqun
  • Wen, Muqing
Registered author(s):

    Abstract

    A test for the homogeneity of normal variances was proposed by Liu and Xu [Liu, X.H., Xu, X.Z., 2010. A generalized p-value approach for testing the homogeneity of variances. Statistics and Probability Letters 80, 1486–1491]. For testing the homogeneity of inverse Gaussian scale-like parameters, a parallel test is developed in this article. The proposed test is proved to have exact frequent property. The merits of the proposed method are numerically compared with the existing method with respect to their sizes and powers under different scenarios. The simulation results show that the proposed approach can perform hypothesis testing with satisfactory sizes and powers.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001885
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 10 ()
    Pages: 1755-1760

    as in new window
    Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1755-1760

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Inverse Gaussian populations; Scale-like parameters; Generalized p-value;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Tian, Lili, 2006. "Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1156-1162, November.
    2. Li, Xinmin, 2009. "A generalized p-value approach for comparing the means of several log-normal populations," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1404-1408, June.
    3. Liu, Xuhua & Xu, Xingzhong, 2010. "A new generalized p-value approach for testing the homogeneity of variances," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1486-1491, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Sadooghi-Alvandi, Soltan Mohammad & Malekzadeh, Ahad, 2013. "A note on testing homogeneity of the scale parameters of several inverse Gaussian distributions," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1844-1848.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1755-1760. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.