IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v78y2008i14p2265-2272.html
   My bibliography  Save this article

The stationarity of multidimensional generalized Ornstein-Uhlenbeck processes

Author

Listed:
  • Endo, Kotaro
  • Matsui, Muneya

Abstract

The multidimensional generalized Ornstein-Uhlenbeck process is defined as an extended version of the generalized Ornstein-Uhlenbeck process of which integral is with respect to a multidimensional Lévy process. The condition for the stationarity of the process and that for the convergence are respectively studied. The relationship between these two conditions is also clarified.

Suggested Citation

  • Endo, Kotaro & Matsui, Muneya, 2008. "The stationarity of multidimensional generalized Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2265-2272, October.
  • Handle: RePEc:eee:stapro:v:78:y:2008:i:14:p:2265-2272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00120-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindner, Alexander & Maller, Ross, 2005. "Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1701-1722, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    2. Bankovsky, Damien, 2010. "Conditions for certain ruin for the generalised Ornstein-Uhlenbeck process and the structure of the upper and lower bounds," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 255-280, February.
    3. Brandes, Dirk-Philip & Lindner, Alexander, 2014. "Non-causal strictly stationary solutions of random recurrence equations," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 113-118.
    4. Klüppelberg, Claudia & Kostadinova, Radostina, 2008. "Integrated insurance risk models with exponential Lévy investment," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 560-577, April.
    5. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    6. Bankovsky, Damien & Sly, Allan, 2009. "Exact conditions for no ruin for the generalised Ornstein-Uhlenbeck process," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2544-2562, August.
    7. Behme, Anita & Lindner, Alexander & Maller, Ross, 2011. "Stationary solutions of the stochastic differential equation with Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 91-108, January.
    8. Behme, Anita & Lindner, Alexander & Reker, Jana & Rivero, Victor, 2021. "Continuity properties and the support of killed exponential functionals," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 115-146.
    9. Behme, Anita & Chong, Carsten & Klüppelberg, Claudia, 2015. "Superposition of COGARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1426-1469.
    10. Ernstsen, Rune Ramsdal & Boomsma, Trine Krogh, 2018. "Valuation of power plants," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1153-1174.
    11. Bertoin, Jean, 2019. "Ergodic aspects of some Ornstein–Uhlenbeck type processes related to Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1443-1454.
    12. Behme, Anita & Lindner, Alexander, 2012. "Multivariate generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1487-1518.
    13. Nikita Ratanov, 2022. "Kac-Ornstein-Uhlenbeck Processes: Stationary Distributions and Exponential Functionals," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2703-2721, December.
    14. Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:78:y:2008:i:14:p:2265-2272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.