Advanced Search
MyIDEAS: Login to save this article or follow this journal

On the tail behaviors of Box-Cox transformed threshold GARCH(1,1) process

Contents:

Author Info

  • Liu, Ji-Chun
Registered author(s):

    Abstract

    This paper considers some structural properties of Box-Cox transformed threshold GARCH(1,1) process. First, a sufficient and necessary condition for the strict stationarity of this threshold GARCH process is given. Second, some simple conditions for the existence of the moments of the threshold GARCH process are also derived. Finally, we describe the tail of the marginal distribution of the threshold GARCH process. It gives a precise meaning to the statement "light-tailed input causes heavy-tailed output".

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1D-4J9MRF8-7/2/af9d64ded23212759a97d775946f819d
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 76 (2006)
    Issue (Month): 13 (July)
    Pages: 1323-1330

    as in new window
    Handle: RePEc:eee:stapro:v:76:y:2006:i:13:p:1323-1330

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Heavy-tail distribution Box-Cox transformation Threshold GARCH Strict stationarity Existence of moments;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    2. Hwang, S. Y. & Woo, Mi-Ja, 2001. "Threshold ARCH(1) processes: asymptotic inference," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 11-20, May.
    3. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    4. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    7. Hwang, S. Y. & Basawa, I. V., 2004. "Stationarity and moment structure for Box-Cox transformed threshold GARCH(1,1) processes," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 209-220, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Haas, Markus, 2008. "The autocorrelation structure of the Markov-switching asymmetric power GARCH process," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1480-1489, September.
    2. Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
    3. Liu, Ji-Chun, 2007. "Stationarity for a Markov-switching Box-Cox transformed threshold GARCH process," Statistics & Probability Letters, Elsevier, vol. 77(13), pages 1428-1438, July.
    4. Park, J.A. & Baek, J.S. & Hwang, S.Y., 2009. "Persistent-threshold-GARCH processes: Model and application," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 907-914, April.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:13:p:1323-1330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.