Advanced Search
MyIDEAS: Login to save this article or follow this journal

On characterizations of the gamma and generalized inverse Gaussian distributions

Contents:

Author Info

  • Chou, Chao-Wei
  • Huang, Wen-Jang
Registered author(s):

    Abstract

    Given two independent non-degenerate positive random variables X and Y, Letac and Wesolowski (Ann. Probab. 28 (2000) 1371) proved that U=(X+Y)-1 and V=X-1-(X+Y)-1 are independent if and only if X and Y are generalized inverse Gaussian (GIG) and gamma distributed, respectively. Note that X=(U+V)-1 and Y=U-1-(U+V)-1. This interesting transformation between (X,Y) and (U,V) preserves a bivariate probability measure which is a product of GIG and gamma distributions. In this work, characterizations of the GIG and gamma distributions through the constancy of regressions of Vr on U are considered.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1D-4BVRJ9K-1/2/75a4cf7d8caa8d2a5770395b570749ab
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 69 (2004)
    Issue (Month): 4 (October)
    Pages: 381-388

    as in new window
    Handle: RePEc:eee:stapro:v:69:y:2004:i:4:p:381-388

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Characterization Constancy of regression Gamma distribution Generalized inverse Gaussian distribution Laplace transform;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Shun-Hwa Li & Wen-Jang Huang & Mong-Na Huang, 1994. "Characterizations of the Poisson process as a renewal process via two conditional moments," Annals of the Institute of Statistical Mathematics, Springer, vol. 46(2), pages 351-360, June.
    2. Matsumoto, Hiroyuki & Yor, Marc, 2003. "Interpretation via Brownian motion of some independence properties between GIG and gamma variables," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 253-259, February.
    3. J. Pusz, 1997. "Regressional Characterization of the Generalized Inverse Gaussian Population," Annals of the Institute of Statistical Mathematics, Springer, vol. 49(2), pages 315-319, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Nadarajah, Saralees, 2009. "An alternative inverse Gaussian distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1721-1729.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:69:y:2004:i:4:p:381-388. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.