Advanced Search
MyIDEAS: Login to save this article or follow this journal

Improved methods for bandwidth selection when estimating ROC curves

Contents:

Author Info

  • Hall, Peter G.
  • Hyndman, Rob J.

Abstract

The receiver operating characteristic (ROC) curve is used to describe the performance of a diagnostic test which classifies observations into two groups. We introduce new methods for selecting bandwidths when computing kernel estimates of ROC curves. Our techniques allow for interaction between the distributions of each group of observations and give substantial improvement in MISE over other proposed methods, especially when the two distributions are very different.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V1D-48NS3VN-2/2/5001eab7e6161b73f4e7c5a7132df8c9
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Statistics & Probability Letters.

Volume (Year): 64 (2003)
Issue (Month): 2 (August)
Pages: 181-189

as in new window
Handle: RePEc:eee:stapro:v:64:y:2003:i:2:p:181-189

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information:
Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

Related research

Keywords: Bandwidth selection Binary classification Kernel estimator MISE ROC curve;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Chang, Yuan-chin Ivan & Park, Eunsik, 2009. "Constructing the best linear combination of diagnostic markers via sequential sampling," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1921-1927, September.
  2. Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
  3. Kaushik Ghosh & Ram Tiwari, 2007. "Empirical process approach to some two-sample problems based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer, vol. 59(4), pages 757-787, December.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:64:y:2003:i:2:p:181-189. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.