IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i6p2329-2345.html
   My bibliography  Save this article

On the limit distributions of continuous-state branching processes with immigration

Author

Listed:
  • Keller-Ressel, Martin
  • Mijatović, Aleksandar

Abstract

We consider the class of continuous-state branching processes with immigration (CBI-processes), introduced by Kawazu and Watanabe (1971) [10] and their limit distributions as time tends to infinity. We determine the Lévy–Khintchine triplet of the limit distribution and give an explicit description in terms of the characteristic triplet of the Lévy subordinator and the scale function of the spectrally positive Lévy process, which describe the immigration resp. branching mechanism of the CBI-process. This representation allows us to describe the support of the limit distribution and characterize its absolute continuity and asymptotic behavior at the boundary of the support, generalizing several known results on self-decomposable distributions.

Suggested Citation

  • Keller-Ressel, Martin & Mijatović, Aleksandar, 2012. "On the limit distributions of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2329-2345.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2329-2345
    DOI: 10.1016/j.spa.2012.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912000452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    2. Martin Keller-Ressel & Thomas Steiner, 2008. "Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 12(2), pages 149-172, April.
    3. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mijatović, Aleksandar & Vidmar, Matija & Jacka, Saul, 2015. "Markov chain approximations to scale functions of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3932-3957.
    2. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    3. Matyas Barczy & Leif Doering & Zenghu Li & Gyula Pap, 2013. "Stationarity and ergodicity for an affine two factor model," Papers 1302.2534, arXiv.org, revised Sep 2013.
    4. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR model with branching processes in sovereign interest rate modeling," Finance and Stochastics, Springer, vol. 21(3), pages 789-813, July.
    5. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    6. Duhalde, Xan & Foucart, Clément & Ma, Chunhua, 2014. "On the hitting times of continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4182-4201.
    7. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    8. Behme, Anita & Schnurr, Alexander, 2018. "Laplace symbols and invariant distributions," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 217-223.
    9. Barczy, Mátyás & Ben Alaya, Mohamed & Kebaier, Ahmed & Pap, Gyula, 2018. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Stochastic Processes and their Applications, Elsevier, vol. 128(4), pages 1135-1164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    2. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    3. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    4. Alessandro Gnoatto, 2012. "The Wishart Short Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-24.
    5. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    6. Martin Keller-Ressel, 2008. "Moment Explosions and Long-Term Behavior of Affine Stochastic Volatility Models," Papers 0802.1823, arXiv.org, revised Oct 2008.
    7. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    8. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    9. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    10. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    11. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    12. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    13. Michele Leonardo Bianchi, 2018. "Are multi-factor Gaussian term structure models still useful? An empirical analysis on Italian BTPs," Papers 1805.09996, arXiv.org.
    14. Martin Keller-Ressel, 2017. "Erratum to: `Yield curve shapes and the asymptotic short rate distribution in affine one-factor models'," Papers 1711.00737, arXiv.org, revised Feb 2018.
    15. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    16. Giuseppe Orlando & Rosa Maria Mininni & Michele Bufalo, 2018. "On The Calibration of Short-Term Interest Rates Through a CIR Model," Papers 1806.03683, arXiv.org.
    17. Barndorff-Nielsen, Ole E. & Maejima, Makoto, 2008. "Semigroups of Upsilon transformations," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2334-2343, December.
    18. Arturo Kohatsu & Makoto Yamazato, 2003. "On moments and tail behaviors of storage processes," Economics Working Papers 673, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Brockwell, Peter J. & Lindner, Alexander, 2009. "Existence and uniqueness of stationary Lévy-driven CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2660-2681, August.
    20. Möhle, Martin & Vetter, Benedict, 2023. "Scaling limits for a class of regular Ξ-coalescents," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 387-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:6:p:2329-2345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.