IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i2p188-201.html
   My bibliography  Save this article

A reflected fBm limit for fluid models with ON/OFF sources under heavy traffic

Author

Listed:
  • Delgado, Rosario

Abstract

We consider a family of non-deterministic fluid models that can be approximated under heavy traffic conditions by a multidimensional reflected fractional Brownian motion (rfBm). Specifically, we prove a heavy traffic limit theorem for multi-station fluid models with feedback and non-deterministic arrival process generated by a large enough number of heavy tailed ON/OFF sources, say N. Scaling in time by a factor r and in state space conveniently, and letting N and r approach infinity (in this order) we prove that the scaled immediate workload process converges in some sense to a rfBm.

Suggested Citation

  • Delgado, Rosario, 2007. "A reflected fBm limit for fluid models with ON/OFF sources under heavy traffic," Stochastic Processes and their Applications, Elsevier, vol. 117(2), pages 188-201, February.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:2:p:188-201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00101-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongshuai Dai, 2013. "Convergence in Law to Operator Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 26(3), pages 676-696, September.
    2. Rosario Delgado, 2016. "A packet-switched network with On/Off sources and a fair bandwidth sharing policy: state space collapse and heavy-traffic," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(2), pages 461-479, June.
    3. Rosario Delgado, 2016. "A two-queue polling model with priority on one queue and heavy-tailed On/Off sources: a heavy-traffic limit," Queueing Systems: Theory and Applications, Springer, vol. 83(1), pages 57-85, June.
    4. Lee Jeonghwa, 2021. "Generalized Bernoulli process with long-range dependence and fractional binomial distribution," Dependence Modeling, De Gruyter, vol. 9(1), pages 1-12, January.
    5. Hongshuai Dai, 2022. "Tandem fluid queue with long-range dependent inputs: sticky behaviour and heavy traffic approximation," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 165-196, June.
    6. Lee, Jeonghwa, 2020. "Wavelet estimation in OFBM: Choosing scale parameter in different sampling methods and different parameter values," Statistics & Probability Letters, Elsevier, vol. 166(C).
    7. Lee Jeonghwa, 2021. "Generalized Bernoulli process: simulation, estimation, and application," Dependence Modeling, De Gruyter, vol. 9(1), pages 141-155, January.
    8. Lee, Chihoon, 2012. "Bounds on exponential moments of hitting times for reflected processes on the positive orthant," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1120-1128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:2:p:188-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.