IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v62y2017icp44-56.html
   My bibliography  Save this article

Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain

Author

Listed:
  • Bueno, Gorka
  • Hoyos, David
  • Capellán-Pérez, Iñigo

Abstract

This paper analyses the contribution of the high speed rail project in the Basque Country, Spain, to energy consumption reduction and to climate change mitigation by means of a simplified Life Cycle Assessment. The calculation of CO2 emissions and energy consumption reductions over the service lifetime of the infrastructure (60 years) shows that, even in the most optimistic scenarios considered, it would neither compensate the CO2 emissions linked to its construction and maintenance (2,71 MtCO2), nor would it contribute to net energy savings before 55 years of service. Robustness of these results leads us to conclude that GHG emissions reduction and energy savings should not be used as a general argument in favour of investing in high-speed rail infrastructure.

Suggested Citation

  • Bueno, Gorka & Hoyos, David & Capellán-Pérez, Iñigo, 2017. "Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain," Research in Transportation Economics, Elsevier, vol. 62(C), pages 44-56.
  • Handle: RePEc:eee:retrec:v:62:y:2017:i:c:p:44-56
    DOI: 10.1016/j.retrec.2017.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885916301172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2017.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bueno, Gorka, 2012. "Analysis of scenarios for the reduction of energy consumption and GHG emissions in transport in the Basque Country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1988-1998.
    2. Westin, Jonas & Kågeson, Per, 2011. "Can high speed rail offset its embedded emissions?," Working papers in Transport Economics 2011:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    3. Chester, Mikhail & Horvath, Arpad, 2010. "Life-Cycle Environmental Assessment of California High Speed Rail," University of California Transportation Center, Working Papers qt4t9303h5, University of California Transportation Center.
    4. Givoni, Moshe & Banister, David, 2012. "Speed: the less important element of the High-Speed Train," Journal of Transport Geography, Elsevier, vol. 22(C), pages 306-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesuina Chipindula & Hongbo Du & Venkata S. V. Botlaguduru & Doeun Choe & Raghava R. Kommalapati, 2022. "Life cycle environmental impact of a high-speed rail system in the Houston-Dallas I-45 corridor," Public Transport, Springer, vol. 14(2), pages 481-501, June.
    2. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Jianyi Lin & Shihui Cheng & Huimei Li & Dewei Yang & Tao Lin, 2019. "Environmental Footprints of High-Speed Railway Construction in China: A Case Study of the Beijing–Tianjin Line," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    4. (Ato) Xu, Wangtu & Huang, Ying, 2019. "The correlation between HSR construction and economic development – Empirical study of Chinese cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 24-36.
    5. Shoshanna Saxe & Dena Kasraian, 2020. "Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1031-1046, October.
    6. Guo, Ying & Cao, Lingyan & Song, Ying & Wang, Yan & Li, Yongkui, 2022. "Understanding the formation of City-HSR network: A case study of Yangtze River Delta, China," Transport Policy, Elsevier, vol. 116(C), pages 315-326.
    7. Yan, Zhimin & Park, Sung Y., 2023. "Does high-speed rail reduce local CO2 emissions in China? A counterfactual approach," Energy Policy, Elsevier, vol. 173(C).
    8. Kortazar, Andoni & Bueno, Gorka & Hoyos, David, 2021. "Environmental balance of the high speed rail network in Spain: A Life Cycle Assessment approach," Research in Transportation Economics, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziana D'Alfonso & Changmin Jiang & Valentina Bracaglia, 2015. "Air transport and high-speed rail competition: environmental implications and mitigation strategies," DIAG Technical Reports 2015-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    2. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    3. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Moshe Givoni, 2020. "The high‐speed bus (HSB) as an alternative to the high‐speed rail (HSR): A conceptual approach examined through a case study," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(3), pages 507-518, June.
    5. Dedinec, Aleksandar & Taseska-Gjorgievska, Verica & Markovska, Natasa & Pop-Jordanov, Jordan & Kanevce, Gligor & Goldstein, Gary & Pye, Steve & Taleski, Rubin, 2016. "Low emissions development pathways of the Macedonian energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1202-1211.
    6. Hao Zhang & Jie He & Xiaomeng Shi & Qiong Hong & Jie Bao & Shuqi Xue, 2020. "Technology Characteristics, Stakeholder Pressure, Social Influence, and Green Innovation: Empirical Evidence from Chinese Express Companies," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    7. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    8. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    9. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    10. Liang Nie & ZhongXiang Zhang, 2021. "Is high-speed rail green? Evidence from a quasi-natural experiment in China," Working Papers 2021.23, Fondazione Eni Enrico Mattei.
    11. Dominique Bouf & Christian Desmaris, 2020. "Spatial equity and high speed trains: the example of France," Post-Print halshs-01137902, HAL.
    12. Lee, Wang-Sheng & Tran, Trang My & Yu, Lamont Bo, 2023. "Green infrastructure and air pollution: Evidence from highways connecting two megacities in China," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    13. Jaller, Miguel & Harvey, John T. & Saremi, Sogol & Ambrose, Hanjiro & Butt, Ali A., 2018. "Development of a Freight System Conceptualization and Impact Assessment (Fre‐SCANDIA) Framework," Institute of Transportation Studies, Working Paper Series qt05g8p7tn, Institute of Transportation Studies, UC Davis.
    14. Wang, Lei & Yuan, Feng & Duan, Xuejun, 2018. "How high-speed rail service development influenced commercial land market dynamics: A case study of Jiangsu province, China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 248-257.
    15. Dylan Brady, 2021. "Between nation and state: Boundary infrastructures, communities of practice and everyday nation-ness in the Chinese rail system," Environment and Planning C, , vol. 39(7), pages 1436-1452, November.
    16. Guirao, Begoña & Campa, Juan Luis, 2014. "A methodology for prioritising HSR corridors: from U.S. theory to Spanish practice," Journal of Transport Geography, Elsevier, vol. 35(C), pages 95-106.
    17. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    18. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    19. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    20. Dominique Bouf & Christian Desmaris, 2015. "Spatial equity and high speed trains: the example of France," Working Papers halshs-01137902, HAL.

    More about this item

    Keywords

    High-speed rail; Transport policy; Transport hierarchy; Life-cycle assessment; Sustainable mobility;
    All these keywords.

    JEL classification:

    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • L42 - Industrial Organization - - Antitrust Issues and Policies - - - Vertical Restraints; Resale Price Maintenance; Quantity Discounts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:62:y:2017:i:c:p:44-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.