IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v29y2010i1p231-242.html
   My bibliography  Save this article

Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network

Author

Listed:
  • Tirachini, Alejandro
  • Hensher, David A.
  • Jara-Díaz, Sergio R.

Abstract

A model to compare three alternative forms of public transport - light rail, heavy rail and bus rapid transit - is developed for an urban network with radial lines emanating from the borders to the city centre. The theoretical framework assumes an operation aimed at minimising the total cost associated with public transport service provision, which encompasses both operator and users costs. The decision variables are the number of lines (network density) and the frequency per period for each mode. This approach has no prejudices a priori in respect of whether a specified delivery scenario is aligned with existing modal reputation. Rather, we establish the conditions under which a specific transit mode should be preferred to another in terms of the operator (supply) and user (demand) side offerings. The model is applied using data from Australian cities, suggesting that in most of the scenarios analysed a high standard bus service is the most cost-effective mode, because it provides lower operator costs (infrastructure, rolling stock and operating cost), access time costs (due to a larger number of lines) and waiting time cost (due to larger frequencies of operation). A rail mode, such as light rail or heavy rail, may have a lower total cost only if it is able to run faster than bus rapid transit, and the difference in speed is enough to outweigh the bus advantage on operator cost and access and waiting times.

Suggested Citation

  • Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
  • Handle: RePEc:eee:retrec:v:29:y:2010:i:1:p:231-242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739-8859(10)00059-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hensher, David A., 2007. "Sustainable public transport systems: Moving towards a value for money and network-based approach and away from blind commitment," Transport Policy, Elsevier, vol. 14(1), pages 98-102, January.
    2. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    3. Litman, Todd, 2007. "Evaluating rail transit benefits: A comment," Transport Policy, Elsevier, vol. 14(1), pages 94-97, January.
    4. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    5. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    6. Boyd, J. Hayden & Asher, Norman J. & Wetzler, Elliot S., 1978. "Nontechnological innovation in urban transit , : A comparison of some alternatives," Journal of Urban Economics, Elsevier, vol. 5(1), pages 1-20, January.
    7. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    8. David Hensher & Thomas Golob, 2008. "Bus rapid transit systems: a comparative assessment," Transportation, Springer, vol. 35(4), pages 501-518, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    4. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    5. De Borger, Bruno & Proost, Stef, 2015. "The political economy of public transport pricing and supply decisions," Economics of Transportation, Elsevier, vol. 4(1), pages 95-109.
    6. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    7. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    8. Guo, Qianwen & Sun, Yanshuo & Schonfeld, Paul & Li, Zhongfei, 2021. "Time-dependent transit fare optimization with elastic and spatially distributed demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 353-378.
    9. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    10. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    11. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    12. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    13. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    14. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    15. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    16. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    17. Hensher, David A. & Li, Zheng & Mulley, Corinne, 2014. "Drivers of bus rapid transit systems – Influences on patronage and service frequency," Research in Transportation Economics, Elsevier, vol. 48(C), pages 159-165.
    18. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    19. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    20. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:29:y:2010:i:1:p:231-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.