IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v40y2011i3p473-486.html
   My bibliography  Save this article

Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks

Author

Listed:
  • Barberá-Tomás, David
  • Jiménez-Sáez, Fernando
  • Castelló-Molina, Itziar

Abstract

Recent empirical findings have questioned the use of patent citations as a measure. This points to the need of validation of patent citations methodologies, which we address by testing a recent methodology for studying technological evolution, namely connectivity analysis of citation networks. We find connectivity analysis to be a valid tool to identify the reliable knowledge which opens the way to further technological evolution of a surgical prosthesis, the artificial spinal disc. We also illustrate how connectivity analysis represents how this reliable knowledge differs depending on the stage of technological evolution. The corroborated validity of connectivity analysis of patent citations may trigger a renaissance in the use of this kind of patent data.

Suggested Citation

  • Barberá-Tomás, David & Jiménez-Sáez, Fernando & Castelló-Molina, Itziar, 2011. "Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks," Research Policy, Elsevier, vol. 40(3), pages 473-486, April.
  • Handle: RePEc:eee:respol:v:40:y:2011:i:3:p:473-486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(10)00237-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    3. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    4. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    5. Palomeras, Neus, 2003. "Sleeping patents: any reason to wake up?," IESE Research Papers D/506, IESE Business School.
    6. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    7. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    8. Davide Consoli & Andrea Mina, 2009. "An evolutionary perspective on health innovation systems," Journal of Evolutionary Economics, Springer, vol. 19(2), pages 297-319, April.
    9. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    10. Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
    11. Giuri, Paola & Mariani, Myriam, 2007. "Inventors and invention processes in Europe: Results from the PatVal-EU survey," Research Policy, Elsevier, vol. 36(8), pages 1105-1106, October.
    12. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    13. Martin Meyer, 2000. "What is Special about Patent Citations? Differences between Scientific and Patent Citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 49(1), pages 93-123, August.
    14. J.S. Metcalfe, 2002. "special issue: Knowledge of growth and the growth of knowledge," Journal of Evolutionary Economics, Springer, vol. 12(1), pages 3-15.
    15. Pier P. Saviotti, 1996. "Technological Evolution, Variety and the Economy," Books, Edward Elgar Publishing, number 727.
    16. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Epicoco, Marianna, 2016. "Patterns of innovation and organizational demography in emerging sustainable fields: An analysis of the chemical sector," Research Policy, Elsevier, vol. 45(2), pages 427-441.
    2. Yolanda Reig-Otero & Monica Edwards & C. Feliú-Mingarro & L. Fernández De Lucio, 2011. "Generation and diffusion of innovations in a district learning system: the case of Ink-Jet Printing," ERSA conference papers ersa11p1834, European Regional Science Association.
    3. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
    4. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    5. Marianna EPICOCO & Vanessa OLTRA & Maïder SAINT JEAN, 2012. "Mapping the scientific knowledge of the Green Chemistry community (In French)," Cahiers du GREThA (2007-2019) 2012-10, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    6. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    7. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    8. Ha, Sung Ho & Liu, Weina & Cho, Hune & Kim, Sang Hyun, 2015. "Technological advances in the fuel cell vehicle: Patent portfolio management," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 277-289.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    2. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    3. Martinelli, Arianna, 2012. "An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry," Research Policy, Elsevier, vol. 41(2), pages 414-429.
    4. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
    5. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    6. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    7. Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
    8. Calvin Weng & Tugrul Daim, 2012. "Structural Differentiation and Its Implications—Core/Periphery Structure of the Technological Network," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 3(4), pages 327-342, December.
    9. Gnekpe, Christian & Plantec, Quentin, 2023. "Regulatory push-pull and technological knowledge dynamics of circular economy innovation," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    10. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    11. Chandra, Praveena & Dong, Andy, 2018. "The relation between knowledge accumulation and technical value in interdisciplinary technologies," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 235-244.
    12. Kuan, Chung-Huei & Huang, Mu-Hsuan & Chen, Dar-Zen, 2018. "Missing links: Timing characteristics and their implications for capturing contemporaneous technological developments," Journal of Informetrics, Elsevier, vol. 12(1), pages 259-270.
    13. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    14. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    15. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    16. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    17. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    18. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    19. van Rijnsoever, Frank J. & van den Berg, Jesse & Koch, Joost & Hekkert, Marko P., 2015. "Smart innovation policy: How network position and project composition affect the diversity of an emerging technology," Research Policy, Elsevier, vol. 44(5), pages 1094-1107.
    20. Fei Yuan & Kumiko Miyazaki, 2017. "Trajectory Identification as Proxies for Discerning the Dynamic Nature of Technological Change — The Case of Electric Vehicles Industry," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:40:y:2011:i:3:p:473-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.