IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v33y2004i9p1259-1284.html
   My bibliography  Save this article

Technological capabilities, invisible infrastructure and the un-social construction of predictability: the overlooked fixed costs of useful research

Author

Listed:
  • Nightingale, Paul

Abstract

No abstract is available for this item.

Suggested Citation

  • Nightingale, Paul, 2004. "Technological capabilities, invisible infrastructure and the un-social construction of predictability: the overlooked fixed costs of useful research," Research Policy, Elsevier, vol. 33(9), pages 1259-1284, November.
  • Handle: RePEc:eee:respol:v:33:y:2004:i:9:p:1259-1284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(04)00112-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hobday, Mike, 1998. "Product complexity, innovation and industrial organisation," Research Policy, Elsevier, vol. 26(6), pages 689-710, February.
    2. Prencipe, Andrea & Tell, Fredrik, 2001. "Inter-project learning: processes and outcomes of knowledge codification in project-based firms," Research Policy, Elsevier, vol. 30(9), pages 1373-1394, December.
    3. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    4. Pavitt, K, 2001. "Public Policies to Support Basic Research: What Can the Rest of the World Learn from US Theory and Practice? (And What They Should Not Learn)," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 10(3), pages 761-779, September.
    5. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    6. Aldo Geuna, 1999. "The Economics of Knowledge Production," Books, Edward Elgar Publishing, number 1689.
    7. Surya Mahdi, 2003. "Search strategy in product innovation process: theory and evidence from the evolution of agrochemical lead discovery process," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(2), pages 235-270, April.
    8. Gambardella, Alfonso, 1992. "Competitive advantages from in-house scientific research: The US pharmaceutical industry in the 1980s," Research Policy, Elsevier, vol. 21(5), pages 391-407, October.
    9. Paul Nightingale, 2003. "If Nelson and Winter are only half right about tacit knowledge, which half? A Searlean critique of 'codification'," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(2), pages 149-183, April.
    10. Constant, Edward II, 2002. "Why evolution is a theory about stability: constraint, causation, and ecology in technological change," Research Policy, Elsevier, vol. 31(8-9), pages 1241-1256, December.
    11. Mirowski,Philip, 1992. "More Heat than Light," Cambridge Books, Cambridge University Press, number 9780521426893.
    12. G. N. von Tunzelmann, 1995. "Technology and Industrial Progress," Books, Edward Elgar Publishing, number 437.
    13. Rosenberg, Nathan, 1992. "Scientific instrumentation and university research," Research Policy, Elsevier, vol. 21(4), pages 381-390, August.
    14. G. Dosi & M. Egidi, 2000. "Substantive and Procedural Uncertainty: An Exploration of Economic Behaviours in Changing Environments," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 5, pages 165-188, Edward Elgar Publishing.
    15. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    16. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    17. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    18. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    19. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    20. Paul Nightingale & Tim Brady & Andrew Davies & Jeremy Hall, 2003. "Capacity utilization revisited: software, control and the growth of large technical systems," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(3), pages 477-517, June.
    21. Hicks, Diana M. & Isard, Phoebe A. & Martin, Ben R., 1996. "A morphology of Japanese and European corporate research networks," Research Policy, Elsevier, vol. 25(3), pages 359-378, May.
    22. Patel, Parimal & Pavitt, Keith, 1994. "The continuing, widespread (and neglected) importance of improvements in mechanical technologies," Research Policy, Elsevier, vol. 23(5), pages 533-545, September.
    23. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    24. Davies, Andrew & Brady, Tim, 2000. "Organisational capabilities and learning in complex product systems: towards repeatable solutions," Research Policy, Elsevier, vol. 29(7-8), pages 931-953, August.
    25. Nightingale, Paul & Poll, Robert, 2000. "Innovation in Investment Banking: The Dynamics of Control Systems within the Chandlerian Firm," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 9(1), pages 113-141, March.
    26. Pavitt, Keith, 1991. "What makes basic research economically useful?," Research Policy, Elsevier, vol. 20(2), pages 109-119, April.
    27. Nelson, Katherine & Nelson, Richard R., 2002. "On the nature and evolution of human know-how," Research Policy, Elsevier, vol. 31(5), pages 719-733, July.
    28. Diana Hicks & Anthony Breitzman & Kimberly Hamilton & Francis Narin, 2000. "Research excellence and patented innovation," Science and Public Policy, Oxford University Press, vol. 27(5), pages 310-320, October.
    29. Pavitt, Keith, 1998. "The social shaping of the national science base," Research Policy, Elsevier, vol. 27(8), pages 793-805, December.
    30. Nelson, Katherine & Nelson, Richard R., 2002. "Erratum to "On the nature and evolution of human know-how" [Research Policy 31 (2002) 719-733]," Research Policy, Elsevier, vol. 31(8-9), pages 1510-1510, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Ayfer & Gittelman, Michelle, 2016. "Research paradigms and useful inventions in medicine: Patents and licensing by teams of clinical and basic scientists in Academic Medical Centers," Research Policy, Elsevier, vol. 45(8), pages 1499-1511.
    2. Nelson, Richard R., 2008. "Bounded rationality, cognitive maps, and trial and error learning," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 78-89, July.
    3. McLeish, Caitriona & Nightingale, Paul, 2007. "Biosecurity, bioterrorism and the governance of science: The increasing convergence of science and security policy," Research Policy, Elsevier, vol. 36(10), pages 1635-1654, December.
    4. Wuestman, Mignon L. & Hoekman, Jarno & Frenken, Koen, 2019. "The geography of scientific citations," Research Policy, Elsevier, vol. 48(7), pages 1771-1780.
    5. Koen Frenken, 2010. "Geography of Scientific Knowledge: A Proximity Approach," Working Papers 10-01, Eindhoven Center for Innovation Studies, revised Mar 2010.
    6. Blandinieres, Florence, 2019. "Anatomy of the medical innovation process: What are the consequences of replicability issues on innovation?," ZEW Discussion Papers 19-011, ZEW - Leibniz Centre for European Economic Research.
    7. Joly, P.B. & Gaunand, A. & Colinet, L. & Larédo, P. & Lemarié, S. & Matt, M., 2015. "ASIRPA: a comprehensive theory-based approach to assessing the societal impacts of a research organization," Working Papers 2015-04, Grenoble Applied Economics Laboratory (GAEL).
    8. Malhotra, Abhishek & Zhang, Huiting & Beuse, Martin & Schmidt, Tobias, 2021. "How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology," Research Policy, Elsevier, vol. 50(9).
    9. Hopkins, Michael M. & Martin, Paul A. & Nightingale, Paul & Kraft, Alison & Mahdi, Surya, 2007. "The myth of the biotech revolution: An assessment of technological, clinical and organisational change," Research Policy, Elsevier, vol. 36(4), pages 566-589, May.
    10. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    11. Malhotra, Abhishek & Schmidt, Tobias S. & Huenteler, Joern, 2019. "The role of inter-sectoral learning in knowledge development and diffusion: Case studies on three clean energy technologies," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 464-487.
    12. Yaqub, Ohid & Nightingale, Paul, 2012. "Vaccine innovation, translational research and the management of knowledge accumulation," Social Science & Medicine, Elsevier, vol. 75(12), pages 2143-2150.
    13. Nelson, John P., 2023. "Differential “progressibility” in human know-how: A conceptual overview," Research Policy, Elsevier, vol. 52(2).
    14. Gittelman, Michelle, 2016. "The revolution re-visited: Clinical and genetics research paradigms and the productivity paradox in drug discovery," Research Policy, Elsevier, vol. 45(8), pages 1570-1585.
    15. Vecchiato, Riccardo, 2020. "Analogical reasoning, cognition, and the response to technological change: Lessons from mobile communication," Research Policy, Elsevier, vol. 49(5).
    16. Langford, Cooper H. & Hall, Jeremy & Josty, Peter & Matos, Stelvia & Jacobson, Astrid, 2006. "Indicators and outcomes of Canadian university research: Proxies becoming goals?," Research Policy, Elsevier, vol. 35(10), pages 1586-1598, December.
    17. Encinar, María Isabel & Muñoz, Félix & Cañibano, Carolina, 2006. "‘Ethical Novelty’: new insights into economic change," Working Papers in Economic Theory 2006/03, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    18. Hopkins, Michael M. & Nightingale, Paul, 2006. "Strategic risk management using complementary assets: Organizational capabilities and the commercialization of human genetic testing in the UK," Research Policy, Elsevier, vol. 35(3), pages 355-374, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    2. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    3. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    4. Keld Laursen & Ammon Salter, 2003. "Searching Low and High What Types of Firms use Universities as a Source of Innovation?," DRUID Working Papers 03-16, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
    5. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    6. Laursen, Keld & Salter, Ammon, 2004. "Searching high and low: what types of firms use universities as a source of innovation?," Research Policy, Elsevier, vol. 33(8), pages 1201-1215, October.
    7. Pavitt, Keith, 1998. "The social shaping of the national science base," Research Policy, Elsevier, vol. 27(8), pages 793-805, December.
    8. Sternitzke, Christian, 2010. "Knowledge sources, patent protection, and commercialization of pharmaceutical innovations," Research Policy, Elsevier, vol. 39(6), pages 810-821, July.
    9. Staffan Jacobsson, 2002. "Universities and industrial transformation: An interpretative and selective literature study with special emphasis on Sweden," SPRU Working Paper Series 81, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    11. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    12. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    13. Malo, Stéphane, 2009. "The contribution of (not so) public research to commercial innovations in the field of combinatorial chemistry," Research Policy, Elsevier, vol. 38(6), pages 957-970, July.
    14. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Sofia Patsali, 2021. "University Procurement-led Innovation," GREDEG Working Papers 2021-13, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    16. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    17. Ashish Arora & Sharon Belenzon & Lia Sheer, 2017. "Back to Basics: Why do Firms Invest in Research?," NBER Working Papers 23187, National Bureau of Economic Research, Inc.
    18. Powell, Walter W. & Giannella, Eric, 2010. "Collective Invention and Inventor Networks," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 575-605, Elsevier.
    19. Di Stefano, Giada & Gambardella, Alfonso & Verona, Gianmario, 2012. "Technology push and demand pull perspectives in innovation studies: Current findings and future research directions," Research Policy, Elsevier, vol. 41(8), pages 1283-1295.
    20. Paul Nightingale, 2012. "Tacit Knowledge," Chapters, in: Richard Arena & Agnès Festré & Nathalie Lazaric (ed.), Handbook of Knowledge and Economics, chapter 17, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:33:y:2004:i:9:p:1259-1284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.