IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v36y2014i1p64-82.html
   My bibliography  Save this article

Non-separable pollution control: Implications for a CO2 emissions cap and trade system

Author

Listed:
  • Agee, Mark D.
  • Atkinson, Scott E.
  • Crocker, Thomas D.
  • Williams, Jonathan W.

Abstract

The federal government now confronts considerable political pressure to add CO2 to the existing set of criteria air pollutants. As with current criteria pollutants, proposals call for control of CO2, assuming that the control of each of the three criteria pollutants is separable from the others. However, control of CO2, SO2, and NOX emissions is most appropriately viewed as joint rather than separable based on engineering relationships. Empirically, we also find considerable jointness. Using a 10-year panel for 77 U.S. electric utilities, which comprise the largest sector in terms of energy-related CO2 emissions, we estimate a multiple-input, multiple-output directional distance function combining good inputs (production capital, pollution control capital, labor, and energy) and a bad input (sulfur burned) to produce good outputs (residential and industrial/commercial electricity production) and bad outputs (SO2, NOX, and CO2). We find that while utilities do not directly control CO2 emissions, considerable jointness exists across SO2, NOX, and CO2 emissions. Failure to account for this jointness increases the cost of pollution control, making it less acceptable to the public and policymakers. We also compute the technical efficiency of our set of utilities and find that considerable cost savings can be achieved by adopting the best technology for production of electricity and reduction of pollutants.

Suggested Citation

  • Agee, Mark D. & Atkinson, Scott E. & Crocker, Thomas D. & Williams, Jonathan W., 2014. "Non-separable pollution control: Implications for a CO2 emissions cap and trade system," Resource and Energy Economics, Elsevier, vol. 36(1), pages 64-82.
  • Handle: RePEc:eee:resene:v:36:y:2014:i:1:p:64-82
    DOI: 10.1016/j.reseneeco.2013.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765513000778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2013.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koop, Gary & Tobias, Justin L., 2006. "Semiparametric Bayesian inference in smooth coefficient models," Journal of Econometrics, Elsevier, vol. 134(1), pages 283-315, September.
    2. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    3. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    4. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    5. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    6. Burtraw, Dallas & Krupnick, Alan & Palmer, Karen & Paul, Anthony & Toman, Michael & Bloyd, Cary, 2003. "Ancillary benefits of reduced air pollution in the US from moderate greenhouse gas mitigation policies in the electricity sector," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 650-673, May.
    7. Zellner, Arnold & Tobias, Justin, 2001. "Further Results on Bayesian Method of Moments Analysis of the Multiple Regression Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 121-140, February.
    8. Considine, Timothy J. & Larson, Donald F., 2006. "The environment as a factor of production," Journal of Environmental Economics and Management, Elsevier, vol. 52(3), pages 645-662, November.
    9. Laurits R. Christensen & Dale W. Jorgenson, 1970. "U.S. Real Product And Real Factor Input, 1929–1967," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 16(1), pages 19-50, March.
    10. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    11. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2014. "Potential gains from trading bad outputs: The case of U.S. electric power plants," Resource and Energy Economics, Elsevier, vol. 36(1), pages 99-112.
    12. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
    15. Moslener, Ulf & Requate, Till, 2007. "Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2293-2316, July.
    16. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    17. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John K. Stranlund & Insung Son, 2019. "Prices Versus Quantities Versus Hybrids in the Presence of Co-pollutants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 353-384, June.
    2. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    3. Don Fullerton & Daniel H. Karney, 2014. "Multiple Pollutants, Uncovered Sectors, and Suboptimal Environmental Policies," NBER Working Papers 20334, National Bureau of Economic Research, Inc.
    4. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    5. Cao, Chaoji & Cui, XueQin & Cai, Wenjia & Wang, Can & Xing, Lu & Zhang, Ning & Shen, Shudong & Bai, Yuqi & Deng, Zhu, 2019. "Incorporating health co-benefits into regional carbon emission reduction policy making: A case study of China’s power sector," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Bing Wang & Yifan Wang & Yuqing Zhao, 2021. "Collaborative Governance Mechanism of Climate Change and Air Pollution: Evidence from China," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    7. Fabio Antoniou & Efthymia Kyriakopoulou, 2019. "On the Strategic Effect of International Permits Trading on Local Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1299-1329, November.
    8. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    9. Reeling, Carson & Garnache, Cloé & Horan, Richard, 2018. "Efficiency gains from integrated multipollutant trading," Resource and Energy Economics, Elsevier, vol. 52(C), pages 124-136.
    10. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    11. Jorge Bonilla & Jessica Coria & Thomas Sterner, 2018. "Technical Synergies and Trade-Offs Between Abatement of Global and Local Air Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 191-221, May.
    12. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2020. "Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis," Energy Policy, Elsevier, vol. 142(C).
    13. Hopkins, Alexander S. & Horan, Richard & Reeling, Carson & Shupp, Robert S., 2021. "Multipollutant Markets Increase the Efficiency of Managing Jointly Produced, Stochastic Emissions," 2021 Annual Meeting, August 1-3, Austin, Texas 314063, Agricultural and Applied Economics Association.
    14. Bin Wu & Wanying Huang & Pengfei Liu, 2017. "Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax," Sustainability, MDPI, vol. 9(10), pages 1-22, September.
    15. Fullerton, Don & Karney, Daniel H., 2018. "Multiple pollutants, co-benefits, and suboptimal environmental policies," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 52-71.
    16. Steinbuks, Jevgenijs & Satija, Gaurav & Zhao, Fu, 2015. "Sustainability of solar electricity : the role of endogenous resource substitution and market mediated responses," Policy Research Working Paper Series 7178, The World Bank.
    17. Antoniou, Fabio & Kyriakopoulou, Efthymia, 2015. "On The Strategic Effect of International Permits Trading on Local Pollution: The Case of Multiple Pollutants," Working Papers in Economics 610, University of Gothenburg, Department of Economics.
    18. Steinbuks, Jevgenijs & Satija, Gaurav & Zhao, Fu, 2017. "Sustainability of solar electricity: The role of endogenous resource substitution and cross-sectoral responses," Resource and Energy Economics, Elsevier, vol. 49(C), pages 218-232.
    19. Hong-Mei Deng & Qiao-Mei Liang, 2017. "Assessing the synergistic reduction effects of different energy environmental taxes: the case of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 811-827, January.
    20. Zhe Wang & Lin Zhao & Guozhu Mao & Ben Wu, 2015. "Factor Decomposition Analysis of Energy-Related CO 2 Emissions in Tianjin, China," Sustainability, MDPI, vol. 7(8), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott E. Atkinson & Jeffrey H. Dorfman, 2009. "Feasible estimation of firm-specific allocative inefficiency through Bayesian numerical methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 675-697.
    2. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    3. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    4. Scott Atkinson & Jeffrey Dorfman, 2005. "Multiple Comparisons with the Best: Bayesian Precision Measures of Efficiency Rankings," Journal of Productivity Analysis, Springer, vol. 23(3), pages 359-382, July.
    5. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    6. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    7. Gary Koop & Lise Tole, 2008. "What is the environmental performance of firms overseas? An empirical investigation of the global gold mining industry," Journal of Productivity Analysis, Springer, vol. 30(2), pages 129-143, October.
    8. Kim, Jae-Young, 2014. "An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification," Journal of Econometrics, Elsevier, vol. 178(P1), pages 132-145.
    9. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    10. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    11. repec:rim:rimwps:26-07 is not listed on IDEAS
    12. Don Fullerton & Daniel H. Karney, 2014. "Multiple Pollutants, Uncovered Sectors, and Suboptimal Environmental Policies," NBER Working Papers 20334, National Bureau of Economic Research, Inc.
    13. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    14. Managi, Shunsuke & Kumar, Surender, 2009. "Trade-induced technological change: Analyzing economic and environmental outcomes," Economic Modelling, Elsevier, vol. 26(3), pages 721-732, May.
    15. Fullerton, Don & Karney, Daniel H., 2018. "Multiple pollutants, co-benefits, and suboptimal environmental policies," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 52-71.
    16. Atkinson, Scott E. & Primont, Daniel & Tsionas, Mike G., 2018. "Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions," Journal of Econometrics, Elsevier, vol. 204(2), pages 131-146.
    17. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.
    18. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    19. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    20. Yu-Ying Lin, Eugene & Chen, Ping-Yu & Chen, Chi-Chung, 2013. "Measuring green productivity of country: A generlized metafrontier Malmquist productivity index approach," Energy, Elsevier, vol. 55(C), pages 340-353.
    21. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.

    More about this item

    Keywords

    U.S. electric power generation; CO2; SO2; NOX emissions; Efficient cap and trade system design; Directional distance function; Technical change;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:36:y:2014:i:1:p:64-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.