Advanced Search
MyIDEAS: Login to save this article or follow this journal

The atmospheric carbon resilience problem: A theoretical analysis

Contents:

Author Info

  • Amigues, Jean-Pierre
  • Moreaux, Michel

Abstract

We study a dynamic carbon pollution model where carbon accumulates both inside a nonrenewable and a renewable reservoir with a constant regeneration rate. Two primary energy sources are available: a cheap exhaustible fossil fuel (coal) and an expensive clean energy alternative (solar). To avoid catastrophic climate events, the global carbon concentration has to remain below some critical mandated ceiling. We show that there exists an upper bound on the coal endowment that can be consumed, which distinguishes two main cases: coal is initially abundant or scarce. If the energy sector has to provide a constant aggregate energy flow to the final users, cost-effectiveness requires that the global ceiling should be attained only when solar energy is introduced. Then the economy stays forever at the ceiling and coal use is progressively replaced by solar energy use. In the abundant coal case, this energy sources substitution process lasts for an infinite duration while in the scarce coal case, coal exploitation ends in finite time. Under a welfare maximization criterion, if coal is abundant, we show that the economy may follow a sequence of phases at the ceiling and below the ceiling before the final transition towards clean energy.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S092876551300047X
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Resource and Energy Economics.

Volume (Year): 35 (2013)
Issue (Month): 4 ()
Pages: 618-636

as in new window
Handle: RePEc:eee:resene:v:35:y:2013:i:4:p:618-636

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505569

Related research

Keywords: Climate change; Carbon pollution; Carbon reservoirs; Carbon ceiling; Fossil fuels; Clean energy;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tahvonen, Olli & Withagen, Cees, 1996. "Optimality of irreversible pollution accumulation," Journal of Economic Dynamics and Control, Elsevier, vol. 20(9-10), pages 1775-1795.
  2. Amigues, Jean-Pierre & Moreaux, Michel & Schubert, Katheline, 2011. "Optimal use of a polluting non renewable resource generating both manageable and catastrophic damages," LERNA Working Papers 11.10.344, LERNA, University of Toulouse.
  3. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
  4. Ujjayant Chakravorty & Bertrand Magne & Michel Moreaux, 2006. "A Hotelling model with a ceiling on the stock of pollution," Working Papers 25547, Institut National de la Recherche Agronomique, France.
  5. Forster, Bruce A., 1975. "Optimal pollution control with a nonconstant exponential rate of decay," Journal of Environmental Economics and Management, Elsevier, vol. 2(1), pages 1-6, September.
  6. Farzin, Y H & Tahvonen, O, 1996. "Global Carbon Cycle and the Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 48(4), pages 515-36, October.
  7. Reyer Gerlagh, 2010. "Too Much Oil," Working Papers 2010.14, Fondazione Eni Enrico Mattei.
  8. Fabien Prieur & Mabel Tidball & Cees A. Withagen, 2011. "Optimal Emission-Extraction Policy in a World of Scarcity and Irreversibility," CESifo Working Paper Series 3512, CESifo Group Munich.
  9. Tahvonen, Olli & Salo, Seppo, 1996. "Nonconvexities in Optimal Pollution Accumulation," Journal of Environmental Economics and Management, Elsevier, vol. 31(2), pages 160-177, September.
  10. Amigues, Jean-Pierre & Lafforgue, Gilles & Moreaux, Michel, 2010. "Optimal capture and sequestration from the carbon emission flow and from the atmospheric carbon stock with heterogeneous energy consuming sectors," TSE Working Papers 10-163, Toulouse School of Economics (TSE).
  11. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
  12. CHAKRAVORTY Ujjayant & MOREAUX Michel & TIDBALL Mabel, 2006. "Ordering the Extraction of Polluting Nonrenewable Resources," LERNA Working Papers 06.19.212, LERNA, University of Toulouse.
  13. Cropper, M. L., 1976. "Regulating activities with catastrophic environmental effects," Journal of Environmental Economics and Management, Elsevier, vol. 3(1), pages 1-15, June.
  14. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
  15. Withagen, C.A.A.M., 1994. "Pollution and exhaustibility of fossil fuels resource," Open Access publications from Tilburg University urn:nbn:nl:ui:12-3107033, Tilburg University.
  16. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-74, November.
  17. Ulph, Alistair & Ulph, David, 1994. "The Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 857-68, Supplemen.
  18. Clarke, Harry R. & Reed, William J., 1994. "Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 991-1010, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Michel Moreaux & Cees Withagen, 2014. "Fluctuating Climate Changes Induced by Optimal Carbon Capturing Policies," Working Papers 2014.01, FAERE - French Association of Environmental and Resource Economists, revised May 2014.
  2. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2012. "Cycles in nonrenewable resource prices with pollution and learning-by-doing," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1448-1461.
  3. Moreaux, Michel & Withagen, Cees, 2013. "Climate Change and Carbon Capture and Storage," IDEI Working Papers 774, Institut d'Économie Industrielle (IDEI), Toulouse.
  4. Fabien Prieur & Mabel Tidball & Cees A. Withagen, 2011. "Optimal Emission-Extraction Policy in a World of Scarcity and Irreversibility," CESifo Working Paper Series 3512, CESifo Group Munich.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:35:y:2013:i:4:p:618-636. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.