IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v30y2008i4p540-554.html
   My bibliography  Save this article

Stochastic technical change, non-renewable resource and optimal sustainable growth

Author

Listed:
  • Lafforgue, Gilles

Abstract

We develop a stochastic endogenous growth model involving a non-renewable resource, in which innovation arrivals are governed by a non-stationary Poisson process. Using a CRRA analytical example, we characterize the optimal trajectories of the model and analyze the effects of uncertainty in the sense of Rothschild and Stiglitz by computing a mean-preserving spread. We show that increased variability in the innovation process always implies a smaller optimal R&D effort, since this leads to a reduced marginal rate of return. Effects on the other variables of the model may also be unambiguously identified depending upon the relative risk aversion of agents, the social discount rate and the marginal arrival rate of innovations. Finally, we investigate the conditions under which, on average, the economy reaches a sustainable growth path.

Suggested Citation

  • Lafforgue, Gilles, 2008. "Stochastic technical change, non-renewable resource and optimal sustainable growth," Resource and Energy Economics, Elsevier, vol. 30(4), pages 540-554, December.
  • Handle: RePEc:eee:resene:v:30:y:2008:i:4:p:540-554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928-7655(08)00024-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ayong Le Kama, Alain D., 2001. "Sustainable growth, renewable resources and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1911-1918, December.
    2. Asheim, Geir B. & Buchholz, Wolfgang & Tungodden, Bertil, 2001. "Justifying Sustainability," Journal of Environmental Economics and Management, Elsevier, vol. 41(3), pages 252-268, May.
    3. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    4. Just, Richard E. & Netanyahu, Sinaia & Olson, Lars J., 2005. "Depletion of natural resources, technological uncertainty, and the adoption of technological substitutes," Resource and Energy Economics, Elsevier, vol. 27(2), pages 91-108, June.
    5. Morton I. Kamien & Nancy L. Schwartz, 1978. "Optimal Exhaustible Resource Depletion with Endogenous Technical Change," Review of Economic Studies, Oxford University Press, vol. 45(1), pages 179-196.
    6. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    7. Walde, Klaus, 2002. "The economic determinants of technology shocks in a real business cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 1-28, November.
    8. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    9. Endress, Lee H. & Roumasset, James A. & Zhou, Ting, 2005. "Sustainable growth with environmental spillovers," Journal of Economic Behavior & Organization, Elsevier, vol. 58(4), pages 527-547, December.
    10. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 29-45.
    11. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    12. Walde, Klaus, 1999. "Optimal Saving under Poisson Uncertainty," Journal of Economic Theory, Elsevier, vol. 87(1), pages 194-217, July.
    13. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 123-137.
    14. Robson, Arthur J, 1980. "Costly Innovation and Natural Resources," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 17-30, February.
    15. Dasgupta, Partha & Stiglitz, Joseph, 1981. "Resource Depletion under Technological Uncertainty," Econometrica, Econometric Society, vol. 49(1), pages 85-104, January.
    16. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    17. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    18. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," Review of Economic Studies, Oxford University Press, vol. 41(5), pages 3-28.
    19. Steger, Thomas M., 2005. "Stochastic growth under Wiener and Poisson uncertainty," Economics Letters, Elsevier, vol. 86(3), pages 311-316, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le, Thanh & Le Van, Cuong, 2018. "Research and development and sustainable growth over alternative types of natural resources," Economic Modelling, Elsevier, vol. 70(C), pages 215-229.
    2. Le, Thanh & Le Van, Cuong, 2016. "Transitional dynamics in an R&D-based growth model with natural resources," Mathematical Social Sciences, Elsevier, vol. 82(C), pages 1-17.
    3. Junhe Chen & Matt Davison, 2021. "Deterministic Asymmetric-cost Differential Games for Energy Production with Production Bounds," SN Operations Research Forum, Springer, vol. 2(4), pages 1-38, December.
    4. Voosholz, Frauke, 2014. "The influence of different production functions on modeling resource extraction and economic growth," CAWM Discussion Papers 72, University of Münster, Münster Center for Economic Policy (MEP).
    5. Hooper, Emma, 2019. "Sustainable growth and financial markets in a natural resource-rich country," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 341-348.
    6. Julen Gonzalez-Redin & J Gareth Polhill & Terence P Dawson & Rosemary Hill & Iain J Gordon, 2018. "It's not the 'what', but the 'how': Exploring the role of debt in natural resource (un)sustainability," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
    7. Elettra Agliardi, 2011. "Sustainability in Uncertain Economies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 71-82, January.
    8. Thanh Le & Cuong Le Van, 2014. "Natural Resources, R&D and Economic Growth," Working Papers 2014-112, Department of Research, Ipag Business School.
    9. Figueroa, Adolfo, 2013. "Economic growth and the environment," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), April.
    10. Ludkovski, Michael & Sircar, Ronnie, 2016. "Technology ladders and R&D in dynamic Cournot markets," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 127-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LAFFORGUE Gilles, 2006. "On the Effects of Stochastic Technical Change on Optimal Sustainable Growth Paths with Exhaustible Resource," LERNA Working Papers 06.02.195, LERNA, University of Toulouse.
    2. Le, Thanh & Le Van, Cuong, 2018. "Research and development and sustainable growth over alternative types of natural resources," Economic Modelling, Elsevier, vol. 70(C), pages 215-229.
    3. Di Maria, Corrado & Valente, Simone, 2006. "The Direction of Technical Change in Capital-Resource Economies," MPRA Paper 1040, University Library of Munich, Germany.
    4. John Hassler & Per Krusell & Conny Olovsson, 2021. "Directed Technical Change as a Response to Natural Resource Scarcity," Journal of Political Economy, University of Chicago Press, vol. 129(11), pages 3039-3072.
    5. Amigues, Jean-Pierre & Moreaux, Michel, 2008. "Dedicated Technical Progress with a Non-renewable Resource: Efficiency and Optimality," IDEI Working Papers 497, Institut d'Économie Industrielle (IDEI), Toulouse.
    6. Tsur, Yacov & Zemel, Amos, 2002. "Growth, Scarcity And R&D," Discussion Papers 14994, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    7. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    8. Hart, Rob, 2012. "The economics of natural resources: Understanding and predicting the evolution of supply and demand," Working Paper Series 2012:01, Swedish University of Agricultural Sciences, Department Economics.
    9. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    10. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    11. Färnstrand Damsgaard, Erika, 2012. "Exhaustible resources, technology choice and industrialization of developing countries," Resource and Energy Economics, Elsevier, vol. 34(3), pages 271-294.
    12. Voosholz, Frauke, 2014. "A survey on modeling economic growth. With special interest on natural resource use," CAWM Discussion Papers 69, University of Münster, Münster Center for Economic Policy (MEP).
    13. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    14. Ronald H. Schmidt, 1988. "Hotelling's rule repealed? An examination of exhaustible resource pricing," Economic Review, Federal Reserve Bank of San Francisco, issue Fall, pages 41-54.
    15. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    16. Di Vita, Giuseppe, 2006. "Natural resources dynamics: Exhaustible and renewable resources, and the rate of technical substitution," Resources Policy, Elsevier, vol. 31(3), pages 172-182, September.
    17. Martinet, Vincent & Rotillon, Gilles, 2007. "Invariance in growth theory and sustainable development," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2827-2846, August.
    18. Hassler, John & Krusell, Per & Olovsson, Conny, 2022. "Finite resources and the world economy," Journal of International Economics, Elsevier, vol. 136(C).
    19. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    20. Hori, Takeo & Yamagami, Hiroaki, 2014. "Intellectual property rights protection in the presence of exhaustible resources," MPRA Paper 58064, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:30:y:2008:i:4:p:540-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.