IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v31y2014icp386-396.html
   My bibliography  Save this article

Review on the development of natural dye photosensitizer for dye-sensitized solar cells

Author

Listed:
  • Ludin, Norasikin A.
  • Al-Alwani Mahmoud, A.M.
  • Bakar Mohamad, Abu
  • Kadhum, Abd. Amir H.
  • Sopian, Kamaruzzaman
  • Abdul Karim, Nor Shazlinah

Abstract

Dye-sensitized solar cell (DSSC) provides credible alternative concept for inorganic solid-state photovoltaic devices. The conversion efficiency of DSSC is mainly based on the dye coated on the porous semiconductor TiO2 film. The use of natural dyes in solar cells is a promising development to this technology because it cuts down the high cost of noble metals and chemical synthesis. Therefore, this type of solar cell has attracted considerable attention from the academic and industrial communities. Numerous kinds of pigments, such as anthocyanin, carotenoid, chlorophyll, and flavonoid, extracted from various plant components, such as leaves, fruits, and flowers, have been tested as sensitizers. The photostability of the DSSC sensitizer material must be capable of undergoing many redox cycles without decomposition, and must also have the ability to carry attachment groups, such as phosphonate or carboxylate, to promptly graft it to the TiO2 oxide. This paper highlights and discusses the development of natural dye photosensitizers and the mechanisms affecting the dye stability.

Suggested Citation

  • Ludin, Norasikin A. & Al-Alwani Mahmoud, A.M. & Bakar Mohamad, Abu & Kadhum, Abd. Amir H. & Sopian, Kamaruzzaman & Abdul Karim, Nor Shazlinah, 2014. "Review on the development of natural dye photosensitizer for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 386-396.
  • Handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:386-396
    DOI: 10.1016/j.rser.2013.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113008058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maddah, Hisham A. & Berry, Vikas & Behura, Sanjay K., 2020. "Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    3. Jaafar, Siti Nur Hidayah & Minggu, Lorna Jeffery & Arifin, Khuzaimah & Kassim, Mohammad B. & Wan, Wan Ramli Daud, 2017. "Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 698-709.
    4. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    5. Miguel A. Taco-Ugsha & Cristian P. Santacruz & Patricio J. Espinoza-Montero, 2020. "Natural Dyes from MortiƱo ( Vaccinium floribundum ) as Sensitizers in Solar Cells," Energies, MDPI, vol. 13(4), pages 1-11, February.
    6. Richhariya, Geetam & Kumar, Anil & Tekasakul, Perapong & Gupta, Bhupendra, 2017. "Natural dyes for dye sensitized solar cell: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 705-718.
    7. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    8. Zouhri, Khalid, 2018. "The effect of iodide and tri-iodide on the dye sensitized solar cell," Renewable Energy, Elsevier, vol. 126(C), pages 210-225.
    9. Bandara, T.M.W.J. & DeSilva, L. Ajith & Ratnasekera, J.L. & Hettiarachchi, K.H. & Wijerathna, A.P. & Thakurdesai, Madhavi & Preston, Joshua & Albinsson, I. & Mellander, B.-E., 2019. "High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 282-290.
    10. Ahmed Sikder & William Ghann & Md Rafsun Jani & Md Tohidul Islam & Saquib Ahmed & Mohammed M. Rahman & Md Abdul Majed Patwary & Mohsin Kazi & Jahidul Islam & Faisal I. Chowdhury & Mohammad A. Yousuf &, 2023. "Characterization and Comparison of DSSCs Fabricated with Black Natural Dyes Extracted from Jamun, Black Plum, and Blackberry," Energies, MDPI, vol. 16(20), pages 1-17, October.
    11. Mat Desa, M.K. & Sapeai, S. & Azhari, A.W. & Sopian, K. & Sulaiman, M.Y. & Amin, N. & Zaidi, S.H., 2016. "Silicon back contact solar cell configuration: A pathway towards higher efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1516-1532.
    12. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    13. Hosseinnezhad, Mozhgan & Gharanjig, Kamaladin & Moradian, Siamak & Saeb, Mohammad Reza, 2017. "In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration?," Energy, Elsevier, vol. 134(C), pages 864-870.
    14. Kumara, N.T.R.N. & Lim, Andery & Lim, Chee Ming & Petra, Mohamad Iskandar & Ekanayake, Piyasiri, 2017. "Recent progress and utilization of natural pigments in dye sensitized solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 301-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:386-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.