IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i12p2898-2904.html
   My bibliography  Save this article

Evaluation of heat exchange rate of GHE in geothermal heat pump systems

Author

Listed:
  • Jun, Liu
  • Xu, Zhang
  • Jun, Gao
  • Jie, Yang

Abstract

Total thermal resistance of ground heat exchanger (GHE) is comprised of that of the soil and inside the borehole. The thermal resistance of soil can be calculated using the linear source theory and cylindrical source theory, while that inside the borehole is more complicated due to the integrated resistance of fluid convection, and the conduction through pipe and grout. Present study evaluates heat exchange rate per depth of GHE by calculating the total thermal resistance, and compares different methods to analyze their similarities and differences for engineering applications. The effects of seven separate factors, running time, shank spacing, depth of borehole, velocity in the pipe, thermal conductivity of grout, inlet temperature and soil type, on the thermal resistance and heat exchange rate are analyzed. Experimental data from several real geothermal heat pump (GHP) applications in Shanghai are used to validate the present calculations. The observations from this study are to provide some guidelines for the design of GHE in GHP systems.

Suggested Citation

  • Jun, Liu & Xu, Zhang & Jun, Gao & Jie, Yang, 2009. "Evaluation of heat exchange rate of GHE in geothermal heat pump systems," Renewable Energy, Elsevier, vol. 34(12), pages 2898-2904.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2898-2904
    DOI: 10.1016/j.renene.2009.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109001621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roth, P. & Georgiev, A. & Busso, A. & Barraza, E., 2004. "First in situ determination of ground and borehole thermal properties in Latin America," Renewable Energy, Elsevier, vol. 29(12), pages 1947-1963.
    2. Sharqawy, Mostafa H. & Said, S.A. & Mokheimer, E.M. & Habib, M.A. & Badr, H.M. & Al-Shayea, N.A., 2009. "First in situ determination of the ground thermal conductivity for boreholeheat exchanger applications in Saudi Arabia," Renewable Energy, Elsevier, vol. 34(10), pages 2218-2223.
    3. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    4. Gao, Jun & Zhang, Xu & Liu, Jun & Li, Kuishan & Yang, Jie, 2008. "Numerical and experimental assessment of thermal performance of vertical energy piles: An application," Applied Energy, Elsevier, vol. 85(10), pages 901-910, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koohi-Fayegh, Seama & Rosen, Marc A., 2012. "Examination of thermal interaction of multiple vertical ground heat exchangers," Applied Energy, Elsevier, vol. 97(C), pages 962-969.
    2. Yoon, Seok & Lee, Seung-Rae & Go, Gyu-Hyun, 2014. "A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers," Energy, Elsevier, vol. 71(C), pages 547-555.
    3. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    4. Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan & Heidari, Bahareh, 2022. "Effects of heat exchange fluid characteristics and pipe configuration on the ultimate bearing capacity of energy piles," Energy, Elsevier, vol. 248(C).
    5. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    6. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    7. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    8. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    9. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    10. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    11. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    12. Seama Koohi-Fayegh & Marc A. Rosen, 2012. "On Thermally Interacting Multiple Boreholes with Variable Heating Strength: Comparison between Analytical and Numerical Approaches," Sustainability, MDPI, vol. 4(8), pages 1-19, August.
    13. Tomislav Kurevija & Marija Macenić & Martina Tuschl, 2023. "Drilling Deeper in Shallow Geoexchange Heat Pump Systems—Thermogeological, Energy and Hydraulic Benefits and Restraints," Energies, MDPI, vol. 16(18), pages 1-17, September.
    14. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    15. Park, Sangwoo & Lee, Dongseop & Choi, Hyun-Jun & Jung, Kyoungsik & Choi, Hangseok, 2015. "Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger)," Energy, Elsevier, vol. 81(C), pages 56-66.
    16. Seama Koohi-Fayegh & Marc A. Rosen, 2013. "A Review of the Modelling of Thermally Interacting Multiple Boreholes," Sustainability, MDPI, vol. 5(6), pages 1-18, June.
    17. Luca Alberti & Adriana Angelotti & Matteo Antelmi & Ivana La Licata, 2017. "A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers," Energies, MDPI, vol. 10(5), pages 1-15, May.
    18. Khaled Salhein & C. J. Kobus & Mohamed Zohdy, 2022. "Control of Heat Transfer in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 15(14), pages 1-24, July.
    19. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    2. Yoon, Seok & Lee, Seung-Rae & Kim, Min-Jun & Kim, Woo-Jin & Kim, Geon-Young & Kim, Kyungsu, 2016. "Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system," Energy, Elsevier, vol. 113(C), pages 328-337.
    3. Franco, A. & Moffat, R. & Toledo, M. & Herrera, P., 2016. "Numerical sensitivity analysis of thermal response tests (TRT) in energy piles," Renewable Energy, Elsevier, vol. 86(C), pages 985-992.
    4. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    5. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    6. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    7. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    8. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P. & Amiri, Leyla, 2017. "Performance evaluation of large scale rock-pit seasonal thermal energy storage for application in underground mine ventilation," Applied Energy, Elsevier, vol. 185(P2), pages 1940-1947.
    10. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    11. Yoon, Seok & Lee, Seung-Rae & Go, Gyu-Hyun, 2014. "A numerical and experimental approach to the estimation of borehole thermal resistance in ground heat exchangers," Energy, Elsevier, vol. 71(C), pages 547-555.
    12. Shim, B.O. & Park, C.-H., 2013. "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea," Energy, Elsevier, vol. 56(C), pages 167-174.
    13. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.
    14. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    15. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    16. Chong, Chiew Shan Anthony & Gan, Guohui & Verhoef, Anne & Garcia, Raquel Gonzalez & Vidale, Pier Luigi, 2013. "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps," Applied Energy, Elsevier, vol. 104(C), pages 603-610.
    17. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    18. Park, Chan-Hee & Lee, Seong Kon & Lee, Cholwoo & Kim, Seong-Kyun, 2018. "Applicability of thermal response tests for assessing in-situ CO2 storage in a saline aquifer," Energy, Elsevier, vol. 154(C), pages 210-220.
    19. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    20. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2898-2904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.