IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v144y2013i1p334-344.html
   My bibliography  Save this article

Performance evaluation of a multi-product CONWIP assembly system with correlated external demands

Author

Listed:
  • Park, Chan-Woo
  • Lee, Hyo-Seong

Abstract

We study a multi-product assembly production system in which individual components are made to meet various order types. We assume that orders arrive according to a Poisson process, but there is a fixed probability that an order requests a particular kit of different components. Under the CONWIP control mechanism, each component is produced by a flow line with several stations. To analyze this system, we develop an approximation algorithm based on a decomposition method. In the algorithm, a product-form approximation technique as well as a matrix-geometric method is used. Numerical results show that the accuracy of the approximation method is acceptable.

Suggested Citation

  • Park, Chan-Woo & Lee, Hyo-Seong, 2013. "Performance evaluation of a multi-product CONWIP assembly system with correlated external demands," International Journal of Production Economics, Elsevier, vol. 144(1), pages 334-344.
  • Handle: RePEc:eee:proeco:v:144:y:2013:i:1:p:334-344
    DOI: 10.1016/j.ijpe.2013.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313000881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahashi, Katsuhiko & Myreshka & Hirotani, Daisuke, 2005. "Comparing CONWIP, synchronized CONWIP, and Kanban in complex supply chains," International Journal of Production Economics, Elsevier, vol. 93(1), pages 25-40, January.
    2. Geraghty, John & Heavey, Cathal, 2004. "A comparison of Hybrid Push/Pull and CONWIP/Pull production inventory control policies," International Journal of Production Economics, Elsevier, vol. 91(1), pages 75-90, September.
    3. Hoen, K.M.R. & Güllü, R. & van Houtum, G.J. & Vliegen, I.M.H., 2011. "A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 95-104, September.
    4. Mascolo, Maria Di, 1996. "Analysis of a synchronization station for the performance evaluation of a kanban system with a general arrival process of demands," European Journal of Operational Research, Elsevier, vol. 89(1), pages 147-163, February.
    5. De Boeck, Liesje & Vandaele, Nico, 2011. "Analytical analysis of a generic assembly system," International Journal of Production Economics, Elsevier, vol. 131(1), pages 107-114, May.
    6. Kelle, Peter & Peak, David, 1996. "A comparison of fixed and adaptive type controls for multi-product processing," International Journal of Production Economics, Elsevier, vol. 45(1-3), pages 139-146, August.
    7. Izak Duenyas & Wallace J. Hopp & Mark L. Spearman, 1993. "Characterizing the Output Process of a CONWIP Line with Deterministic Processing and Random Outages," Management Science, INFORMS, vol. 39(8), pages 975-988, August.
    8. Cao, Dong & Chen, Mingyuan, 2005. "A mixed integer programming model for a two line CONWIP-based production and assembly system," International Journal of Production Economics, Elsevier, vol. 95(3), pages 317-326, March.
    9. Jing-Sheng Song & Susan H. Xu & Bin Liu, 1999. "Order-Fulfillment Performance Measures in an Assemble-to-Order System with Stochastic Leadtimes," Operations Research, INFORMS, vol. 47(1), pages 131-149, February.
    10. Duri, Christelle & Frein, Yannick & Lee, Hyo-Seong, 2000. "Performance evaluation and design of a CONWIP system with inspections," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 219-229, March.
    11. Georg Krieg & Heinrich Kuhn, 2004. "Analysis of Multi-Product Kanban Systems with State-Dependent Setups and Lost Sales," Annals of Operations Research, Springer, vol. 125(1), pages 141-166, January.
    12. Ayhan, Hayriye & Wortman, Martin A., 1999. "An approximation for computing the throughput of closed assembly-type queueing networks," European Journal of Operational Research, Elsevier, vol. 112(1), pages 107-121, January.
    13. Askin, Ronald G. & Krishnan, Shravan, 2009. "Defining inventory control points in multiproduct stochastic pull systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 418-429, August.
    14. Maria Di Mascolo & Yannick Frein & Yves Dallery, 1996. "An Analytical Method for Performance Evaluation of Kanban Controlled Production Systems," Operations Research, INFORMS, vol. 44(1), pages 50-64, February.
    15. Mark L. Spearman & Michael A. Zazanis, 1992. "Push and Pull Production Systems: Issues and Comparisons," Operations Research, INFORMS, vol. 40(3), pages 521-532, June.
    16. Pettersen, Jan-Arne & Segerstedt, Anders, 2009. "Restricted work-in-process: A study of differences between Kanban and CONWIP," International Journal of Production Economics, Elsevier, vol. 118(1), pages 199-207, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Lin & Leidi Shen & Zhiheng Zhao & George Q. Huang, 2019. "Graduation manufacturing system: synchronization with IoT-enabled smart tickets," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2885-2900, December.
    2. Onyeocha, Chukwunonyelum Emmanuel & Wang, Jiayi & Khoury, Joseph & Geraghty, John, 2015. "A comparison of HK-CONWIP and BK-CONWIP control strategies in a multi-product manufacturing system," Operations Research Perspectives, Elsevier, vol. 2(C), pages 137-149.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onyeocha, Chukwunonyelum Emmanuel & Wang, Jiayi & Khoury, Joseph & Geraghty, John, 2015. "A comparison of HK-CONWIP and BK-CONWIP control strategies in a multi-product manufacturing system," Operations Research Perspectives, Elsevier, vol. 2(C), pages 137-149.
    2. Yang, Taho & Fu, Hsin-Pin & Yang, Kuang-Yi, 2007. "An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy--A case study," International Journal of Production Economics, Elsevier, vol. 107(1), pages 104-114, May.
    3. Lavoie, P. & Gharbi, A. & Kenné, J.-P., 2010. "A comparative study of pull control mechanisms for unreliable homogenous transfer lines," International Journal of Production Economics, Elsevier, vol. 124(1), pages 241-251, March.
    4. Kumar Satyam & Ananth Krishnamurthy, 2013. "Performance analysis of CONWIP systems with batch size constraints," Annals of Operations Research, Springer, vol. 209(1), pages 85-114, October.
    5. Zhao Xiaobo & Qiguo Gong & Kenichi Nakashima, 2001. "Analysis of a production system in a general configuration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(2), pages 128-143, March.
    6. Tardif, Valerie & Maaseidvaag, Lars, 2001. "An adaptive approach to controlling kanban systems," European Journal of Operational Research, Elsevier, vol. 132(2), pages 411-424, July.
    7. Wilhelm, W. E. & Som, Pradip, 1998. "Analysis of a single-stage, single-product, stochastic, MRP-controlled assembly system," European Journal of Operational Research, Elsevier, vol. 108(1), pages 74-93, July.
    8. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    9. Pettersen, Jan-Arne & Segerstedt, Anders, 2009. "Restricted work-in-process: A study of differences between Kanban and CONWIP," International Journal of Production Economics, Elsevier, vol. 118(1), pages 199-207, March.
    10. Lage Junior, Muris & Godinho Filho, Moacir, 2010. "Variations of the kanban system: Literature review and classification," International Journal of Production Economics, Elsevier, vol. 125(1), pages 13-21, May.
    11. Ana Bušić & Ingrid Vliegen & Alan Scheller-Wolf, 2012. "Comparing Markov Chains: Aggregation and Precedence Relations Applied to Sets of States, with Applications to Assemble-to-Order Systems," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 259-287, May.
    12. Duri, Christelle & Frein, Yannick & Lee, Hyo-Seong, 2000. "Performance evaluation and design of a CONWIP system with inspections," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 219-229, March.
    13. Othmane Benmoussa, 2022. "Improving Replenishment Flows Using Simulation Results: A Case Study," Logistics, MDPI, vol. 6(2), pages 1-26, May.
    14. Gong, Qiguo & Yang, Yuru & Wang, Shouyang, 2014. "Information and decision-making delays in MRP, KANBAN, and CONWIP," International Journal of Production Economics, Elsevier, vol. 156(C), pages 208-213.
    15. Michael Dreyfuss & Alan Stulman, 2018. "Waiting time distribution for an exchangeable item repair system with up to two failed components," Annals of Operations Research, Springer, vol. 261(1), pages 167-184, February.
    16. Plaza, Malgorzata & David, Iulian & Shirazi, Farid, 2018. "Management of inventory under market fluctuations the case of a Canadian high tech company," International Journal of Production Economics, Elsevier, vol. 205(C), pages 215-227.
    17. S. Rahimi-Ghahroodi & A. Al Hanbali & W. H. M. Zijm & J. K. W. Ommeren & A. Sleptchenko, 2017. "Integrated planning of spare parts and service engineers with partial backlogging," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 711-748, July.
    18. Güllü, Refik & Köksalan, Murat, 2013. "A model for performance evaluation and stock optimization in a kit management problem," International Journal of Production Economics, Elsevier, vol. 143(2), pages 527-535.
    19. Hoen, K.M.R. & Güllü, R. & van Houtum, G.J. & Vliegen, I.M.H., 2011. "A simple and accurate approximation for the order fill rates in lost-sales Assemble-to-Order systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 95-104, September.
    20. Gregory A. DeCroix & Jing-Sheng Song & Paul H. Zipkin, 2009. "Managing an Assemble-to-Order System with Returns," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 144-159, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:144:y:2013:i:1:p:334-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.