IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i5p1072-1079.html
   My bibliography  Save this article

The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory

Author

Listed:
  • Chi, Qingjia
  • Wang, Guixue
  • Jiang, Jiahuan

Abstract

A dynamical mean field theory is used to predict the end-monomer mean square displacement of single-stranded DNA and finally estimate two important parameters—the persistence length lp and the length per base ld. Both parameters are set free, and finally reach optimum values by fitting the theoretical data to the experimental data of Shusterman et al. [R. Shusterman, S. Alon, T. Gavrinyov, O. Krichevsky, Monomer dynamics in double- and single-stranded DNA polymers, Phys. Rev. Lett. 92 (2004) 048303]. Three optimization methods, global optimization, individual optimization and selected optimization are performed with the Monte Carlo method. All the optimization methods can faithfully reproduce the experimental data. In selected optimization for 2400 and 6700 bases ssDNA, lp=2.223nm and ld=0.676nm are obtained. The theoretical results show a larger persistence length for ssDNA than ordinary synthetic polymers, and the obtained length per base is larger than the reported value obtained from single molecule force measurements. The lp and ld obtained from mean field theory complement the current data previously measured for different salt concentrations in solution.

Suggested Citation

  • Chi, Qingjia & Wang, Guixue & Jiang, Jiahuan, 2013. "The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1072-1079.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:5:p:1072-1079
    DOI: 10.1016/j.physa.2012.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008771
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gijs J.L. Wuite & Steven B. Smith & Mark Young & David Keller & Carlos Bustamante, 2000. "Single-molecule studies of the effect of template tension on T7 DNA polymerase activity," Nature, Nature, vol. 404(6773), pages 103-106, March.
    2. Hinczewski, Michael & Netz, Roland R., 2010. "Dynamics of DNA: Experimental controversies and theoretical insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(15), pages 2993-2996.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Karna & Eriko Mano & Jiahao Ji & Ibuki Kawamata & Yuki Suzuki & Hanbin Mao, 2023. "Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lidice González & Daniel Kolbin & Christian Trahan & Célia Jeronimo & François Robert & Marlene Oeffinger & Kerry Bloom & Stephen W. Michnick, 2023. "Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Akbari & Melika Shahhosseini & Ariel Robbins & Michael G. Poirier & Jonathan W. Song & Carlos E. Castro, 2022. "Low cost and massively parallel force spectroscopy with fluid loading on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:5:p:1072-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.