Advanced Search
MyIDEAS: Login to save this article or follow this journal

Evaluation of network robustness using a node tearing algorithm

Contents:

Author Info

  • Ma, A.
  • Mondragón, R.J.
Registered author(s):

    Abstract

    Until recently the study of failure and vulnerability in complex networks focused on the role of high degree nodes, and the relationship between their removal and network connectivity. Recent evidence suggested that in some network configurations, the removal of lower degree nodes can also cause network fragmentation. We present a disassembling algorithm that identifies nodes that are core to network connectivity. The algorithm is based on network tearing in which communities are defined and used to construct a hierarchical structure. Cut-nodes, which are located at the boundaries of the communities, are the key interest. Their importance in the overall network connectivity is characterized by their participation with neighbouring communities in each level of the hierarchy. We examine the impact of these cut-nodes by studying the change in size of the giant component, local and global efficiencies, and how the algorithm can be combined with other community detection methods to reveal the finer internal structure within a community.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007273
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 391 (2012)
    Issue (Month): 24 ()
    Pages: 6674-6681

    as in new window
    Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6674-6681

    Contact details of provider:
    Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

    Related research

    Keywords: Network tearing; Network connectivity; Vulnerability in complex networks; Community;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Sun, Shiwen & Liu, Zhongxin & Chen, Zengqiang & Yuan, Zhuzhi, 2007. "Error and attack tolerance of evolving networks with local preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 851-860.
    2. Ghedini, Cinara G. & Ribeiro, Carlos H.C., 2011. "Rethinking failure and attack tolerance assessment in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4684-4691.
    3. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6674-6681. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.