IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i11p1876-1883.html
   My bibliography  Save this article

Solutions of the space-time fractional Cattaneo diffusion equation

Author

Listed:
  • Qi, Haitao
  • Jiang, Xiaoyun

Abstract

The object of this paper is to present the exact solution of the fractional Cattaneo equation for describing anomalous diffusion. The classical Cattaneo model has been generalised to the space-time fractional Cattaneo model. The method of the joint Laplace and Fourier transform is used in deriving the solution. The solutions of the fractional Cattaneo equation are obtained under integral and series forms in terms of the H-functions. Finally, the fractional order moments are also investigated.

Suggested Citation

  • Qi, Haitao & Jiang, Xiaoyun, 2011. "Solutions of the space-time fractional Cattaneo diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1876-1883.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:11:p:1876-1883
    DOI: 10.1016/j.physa.2011.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711100118X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    2. Paradisi, Paolo & Cesari, Rita & Mainardi, Francesco & Tampieri, Francesco, 2001. "The fractional Fick's law for non-local transport processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(1), pages 130-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kostrobij, P.P. & Markovych, B.M. & Viznovych, O.V. & Tokarchuk, M.V., 2019. "Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 63-70.
    2. Liu, Lin & Chen, Siyu & Bao, Chunxu & Feng, Libo & Zheng, Liancun & Zhu, Jing & Zhang, Jiangshan, 2023. "Analysis of the absorbing boundary conditions for anomalous diffusion in comb model with Cattaneo model in an unbounded region," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    4. Mishra, T.N. & Rai, K.N., 2016. "Numerical solution of FSPL heat conduction equation for analysis of thermal propagation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1006-1017.
    5. Liu, Zhengguang & Cheng, Aijie & Li, Xiaoli, 2017. "A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 361-374.
    6. Tawfik, Ashraf M. & Abdelhamid, Hamdi M., 2021. "Generalized fractional diffusion equation with arbitrary time varying diffusivity," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Wang, Zhaoyang & Zheng, Liancun, 2020. "Anomalous diffusion in inclined comb-branch structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    8. Tawfik, Ashraf M. & Fichtner, Horst & Elhanbaly, A. & Schlickeiser, Reinhard, 2018. "Analytical solution of the space–time fractional hyperdiffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 178-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awad, Emad & Sandev, Trifce & Metzler, Ralf & Chechkin, Aleksei, 2021. "Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    3. Guo, Gang & Chen, Bin & Zhao, Xinjun & Zhao, Fang & Wang, Quanmin, 2015. "First passage time distribution of a modified fractional diffusion equation in the semi-infinite interval," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 279-290.
    4. Gorenflo, Rudolf & Mainardi, Francesco & Moretti, Daniele & Pagnini, Gianni & Paradisi, Paolo, 2002. "Fractional diffusion: probability distributions and random walk models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 305(1), pages 106-112.
    5. Guo, Gang & Li, Kun & Wang, Yuhui, 2015. "Exact solutions of a modified fractional diffusion equation in the finite and semi-infinite domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 193-201.
    6. Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    7. Néel, Marie-Christine & Abdennadher, Ali & Solofoniaina, Joelson, 2008. "A continuous variant for Grünwald–Letnikov fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2750-2760.
    8. Chen, Y. & Chen, Chang-Ming, 2018. "Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 319-330.
    9. Hernandez-Martinez, Eliseo & Valdés-Parada, Francisco & Alvarez-Ramirez, Jose & Puebla, Hector & Morales-Zarate, Epifanio, 2016. "A Green’s function approach for the numerical solution of a class of fractional reaction–diffusion equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 133-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:11:p:1876-1883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.