IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i23p5826-5843.html
   My bibliography  Save this article

Quantum-like microeconomics: Statistical model of distribution of investments and production

Author

Listed:
  • Khrennikov, Andrei

Abstract

In this paper we demonstrate that the probabilistic quantum-like (QL) behavior–the Born’s rule, interference of probabilities, violation of Bell’s inequality, representation of variables by in general noncommutative self-adjoint operators, Schrödinger’s dynamics–can be exhibited not only by processes in the micro world, but also in economics. In our approach the QL-behavior is induced not by properties of systems. Here systems (commodities) are macroscopic. They could not be superpositions of two different states. In our approach the QL-behavior of economical statistics is a consequence of the organization of the process of production as well as investments. In particular, Hamiltonian (“financial energy”) is determined by rate of return.

Suggested Citation

  • Khrennikov, Andrei, 2008. "Quantum-like microeconomics: Statistical model of distribution of investments and production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5826-5843.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:23:p:5826-5843
    DOI: 10.1016/j.physa.2008.06.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108005906
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.06.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2003. "Interference of quantum market strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 516-528.
    2. Haven, Emmanuel, 2004. "The wave-equivalent of the Black–Scholes option price: an interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 142-145.
    3. Edward W. Piotrowski & Jan Sladkowski, "undated". "Quantum-Like Approach to Financial Risk: Quantum Anthropic Principle," Departmental Working Papers 8, University of Bialtystok, Department of Theoretical Physics.
    4. Haven, Emmanuel, 2003. "A Black-Scholes Schrödinger option price: ‘bit’ versus ‘qubit’," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 201-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baaquie, Belal E. & Yu, Miao & Du, Xin, 2016. "Multiple commodities in statistical microeconomics: Model and market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 912-929.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guevara Hidalgo, Esteban, 2006. "Quantum Replicator Dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 393-407.
    2. Piotrowski, Edward W. & Sładkowski, Jan, 2005. "Quantum diffusion of prices and profits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 185-195.
    3. Sładkowski, Jan, 2003. "Giffen paradoxes in quantum market games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 234-240.
    4. Piotrowski, Edward W. & Sładkowski, Jan, 2008. "Quantum auctions: Facts and myths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3949-3953.
    5. Rotundo, Giulia, 2014. "Black–Scholes–Schrödinger–Zipf–Mandelbrot model framework for improving a study of the coauthor core score," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 296-301.
    6. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    7. Will Hicks, 2020. "Pseudo-Hermiticity, Martingale Processes and Non-Arbitrage Pricing," Papers 2009.00360, arXiv.org, revised Apr 2021.
    8. Jan Sladkowski & Edward W. Piotrowski, "undated". "Risk in Quantum Market Games (in Polish)," Departmental Working Papers 117pl, University of Bialtystok, Department of Theoretical Physics.
    9. Contreras, Mauricio & Pellicer, Rely & Villena, Marcelo, 2017. "Dynamic optimization and its relation to classical and quantum constrained systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 12-25.
    10. Bustamante, M. & Contreras, M., 2016. "Multi-asset Black–Scholes model as a variable second class constrained dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 540-572.
    11. Carlos Pedro Gonc{c}alves, 2012. "Chaos and Nonlinear Dynamics in a Quantum Artificial Economy," Papers 1202.6647, arXiv.org.
    12. Edward W. Piotrowski, "undated". "Quantum Mind. A sketch (in Polish)," Departmental Working Papers 120pl, University of Bialtystok, Department of Theoretical Physics.
    13. C. Gonçalves P., 2015. "Financial Market Modeling With Quantum Neural Networks," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(4), pages 44-63.
    14. Edward W. Piotrowski & Jan Sladkowski, "undated". "An Invitation to Quantum Game Theory," Departmental Working Papers 15, University of Bialtystok, Department of Theoretical Physics.
    15. G., Mauricio Contreras & Peña, Juan Pablo, 2019. "The quantum dark side of the optimal control theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 450-473.
    16. Wesley Phoa & Sergio Focardi & Frank Fabozzi, 2007. "How do conflicting theories about financial markets coexist?," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 29(3), pages 363-391.
    17. Choustova, Olga Al., 2007. "Quantum Bohmian model for financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 304-314.
    18. Piotrowski, Edward W. & Sładkowski, Jan & Syska, Jacek, 2003. "Interference of quantum market strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 516-528.
    19. Edward W. Piotrowski & Jan Sladkowski, "undated". "Trading by Quantum Rules - Quantum Anthropic Principle," Departmental Working Papers 9, University of Bialtystok, Department of Theoretical Physics.
    20. Will Hicks, 2019. "Closed Quantum Black-Scholes: Quantum Drift and the Heisenberg Equation of Motion," Papers 1911.11475, arXiv.org, revised Jan 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:23:p:5826-5843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.