IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v381y2007icp93-103.html
   My bibliography  Save this article

Delay-dependent stability for uncertain stochastic neural networks with time-varying delay

Author

Listed:
  • Huang, He
  • Feng, Gang

Abstract

This paper is concerned with the robust stability analysis problem for uncertain stochastic neural networks with time-varying delay. The parameter uncertainties are assumed to be norm bounded. By defining a new Lyapunov–Krasovskii functional, the restrictions such as the time-varying delay was required to be differentiable and its derivative was strictly smaller than one, are removed. Based on the linear matrix inequality approach, delay-dependent stability criteria are obtained such that for all admissible uncertainties, the stochastic neural network is globally asymptotically stable in the mean square. Two slack variables are introduced into the obtained stability criteria to reduce the conservatism. Finally, a numerical example is given to illustrate the effectiveness of the developed method.

Suggested Citation

  • Huang, He & Feng, Gang, 2007. "Delay-dependent stability for uncertain stochastic neural networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 93-103.
  • Handle: RePEc:eee:phsmap:v:381:y:2007:i:c:p:93-103
    DOI: 10.1016/j.physa.2007.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107003718
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hongbin & Li, Chunguang & Liao, Xiaofeng, 2005. "A note on the robust stability of neural networks with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 357-360.
    2. Wang, Zidong & Lauria, Stanislao & Fang, Jian’an & Liu, Xiaohui, 2007. "Exponential stability of uncertain stochastic neural networks with mixed time-delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 62-72.
    3. Cao, Jinde & Ho, Daniel W.C., 2005. "A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1317-1329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    2. Song, Qiankun & Wang, Zidong, 2008. "Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3314-3326.
    3. R. Sakthivel & R. Samidurai & S. M. Anthoni, 2010. "Asymptotic Stability of Stochastic Delayed Recurrent Neural Networks with Impulsive Effects," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 583-596, December.
    4. Feng, Wei & Yang, Simon X. & Wu, Haixia, 2009. "On robust stability of uncertain stochastic neural networks with distributed and interval time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2095-2104.
    5. Liu, Xiwei & Chen, Tianping, 2008. "Robust μ -stability for uncertain stochastic neural networks with unbounded time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2952-2962.
    6. Chendur Kumaran, R. & Venkatesh, T.G. & Swarup, K.S., 2022. "Stochastic delay differential equations: Analysis and simulation studies," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    7. Lin, Yi-Kuei, 2010. "Reliability evaluation of a revised stochastic flow network with uncertain minimum time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1253-1258.
    8. Feng, Wei & Yang, Simon X. & Fu, Wei & Wu, Haixia, 2009. "Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 414-424.
    9. Shu, Huisheng & Wang, Zidong & Lü, Zengwei, 2009. "Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 490-505.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    2. Feng, Wei & Yang, Simon X. & Fu, Wei & Wu, Haixia, 2009. "Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 414-424.
    3. Gao, Ming & Cui, Baotong, 2009. "Global robust stability of neural networks with multiple discrete delays and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1823-1834.
    4. Liu, Xiwei & Chen, Tianping, 2008. "Robust μ -stability for uncertain stochastic neural networks with unbounded time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2952-2962.
    5. Singh, Vimal, 2009. "Novel global robust stability criterion for neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 348-353.
    6. Singh, Vimal, 2009. "Remarks on estimating upper limit of norm of delayed connection weight matrix in the study of global robust stability of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2013-2017.
    7. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    8. Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
    9. Xu, Jian & Chung, Kwok-Wai, 2009. "Dynamics for a class of nonlinear systems with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 28-49.
    10. Sun, Yeong-Jeu, 2007. "Duality between observation and output feedback for linear systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 879-884.
    11. Syed Ali, M. & Balasubramaniam, P., 2009. "Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2191-2199.
    12. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    13. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    14. Rajchakit, G. & Sriraman, R. & Lim, C.P. & Unyong, B., 2022. "Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 508-527.
    15. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    16. Singh, Vimal, 2007. "On global exponential stability of delayed cellular neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 188-193.
    17. Lin, Yi-Kuei, 2010. "Reliability evaluation of a revised stochastic flow network with uncertain minimum time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1253-1258.
    18. Ou, Ou, 2007. "Global robust exponential stability of delayed neural networks: An LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1742-1748.
    19. Wang, Kai & Teng, Zhidong & Jiang, Haijun, 2008. "Adaptive synchronization of neural networks with time-varying delay and distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 631-642.
    20. Singh, Vimal, 2007. "Improved global robust stability criterion for delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 224-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:381:y:2007:i:c:p:93-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.