IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v378y2007i2p591-602.html
   My bibliography  Save this article

Weighted assortative and disassortative networks model

Author

Listed:
  • Leung, C.C.
  • Chau, H.F.

Abstract

Real-world networks process structured connections since they have non-trivial vertex degree correlation and clustering. Here we propose a toy model of structure formation in real-world weighted network. In our model, a network evolves by topological growth as well as by weight change. In addition, we introduce the weighted assortativity coefficient, which generalizes the assortativity coefficient of a topological network, to measure the tendency of having a high-weighted link between two vertices of similar degrees. Network generated by our model exhibits scale-free behavior with a tunable exponent. Besides, a few non-trivial features found in real-world networks are reproduced by varying the parameter ruling the speed of weight evolution. Most importantly, by studying the weighted assortativity coefficient, we found that both topologically assortative and disassortative networks generated by our model are in fact weighted assortative.

Suggested Citation

  • Leung, C.C. & Chau, H.F., 2007. "Weighted assortative and disassortative networks model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 591-602.
  • Handle: RePEc:eee:phsmap:v:378:y:2007:i:2:p:591-602
    DOI: 10.1016/j.physa.2006.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106013707
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricca, Federica & Scozzari, Andrea, 2024. "Portfolio optimization through a network approach: Network assortative mixing and portfolio diversification," European Journal of Operational Research, Elsevier, vol. 312(2), pages 700-717.
    2. Stefano Martinazzi & Andrea Flori, 2020. "The evolving topology of the Lightning Network: Centralization, efficiency, robustness, synchronization, and anonymity," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    3. León, C. & Berndsen, R.J. & Renneboog, L.D.R., 2014. "Financial Stability and Interacting Networks of Financial Institutions and Market Infrastructures," Other publications TiSEM 0de9add3-0338-4575-9c00-b, Tilburg University, School of Economics and Management.
    4. León, Carlos & Berndsen, Ron J., 2014. "Rethinking financial stability: Challenges arising from financial networks’ modular scale-free architecture," Journal of Financial Stability, Elsevier, vol. 15(C), pages 241-256.
    5. León, C., 2015. "Financial stability from a network perspective," Other publications TiSEM bb2e4e44-e842-45c6-a946-4, Tilburg University, School of Economics and Management.
    6. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2009. "The expectation hypothesis of interest rates and network theory: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1137-1149.
    7. Olufolajimi Oke & Kavi Bhalla & David C. Love & Sauleh Siddiqui, 2018. "Spatial associations in global household bicycle ownership," Annals of Operations Research, Springer, vol. 263(1), pages 529-549, April.
    8. Sabek, M. & Pigorsch, U., 2023. "Local assortativity in weighted and directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    9. Pigorsch, U. & Sabek, M., 2022. "Assortative mixing in weighted directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    10. Arcagni, Alberto & Grassi, Rosanna & Stefani, Silvana & Torriero, Anna, 2021. "Extending assortativity: An application to weighted social networks," Journal of Business Research, Elsevier, vol. 129(C), pages 774-783.
    11. Hongqi Li & Haotian Wang & Ming Bai & Bin Duan, 2018. "The Structure and Periodicity of the Chinese Air Passenger Network," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    12. Kephart, Curtis & Friedman, Daniel & Baumer, Matt, 2015. "Emergence of networks and market institutions in a large virtual economy," Discussion Papers, Research Professorship Market Design: Theory and Pragmatics SP II 2015-502, WZB Berlin Social Science Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:378:y:2007:i:2:p:591-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.