Advanced Search
MyIDEAS: Login

Neural networks and bounded rationality

Contents:

Author Info

  • Sgroi, Daniel
  • Zizzo, Daniel J.

Abstract

Traditionally the emphasis in neural network research has been on improving their performance as a means of pattern recognition. Here we take an alternative approach and explore the remarkable similarity between the under-performance of neural networks trained to behave optimally in economic situations and observed human performance in the laboratory under similar circumstances. In particular, we show that neural networks are consistent with observed laboratory play in two very important senses. Firstly, they select a rule for behavior which appears very similar to that used by laboratory subjects. Secondly, using this rule they perform optimally only approximately 60% of the time.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S037843710601048X
Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

Volume (Year): 375 (2007)
Issue (Month): 2 ()
Pages: 717-725

as in new window
Handle: RePEc:eee:phsmap:v:375:y:2007:i:2:p:717-725

Contact details of provider:
Web page: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/

Related research

Keywords: Neural networks; Game theory; Bounded rationality; Learning;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Spiliopoulos, Leonidas, 2009. "Neural networks as a learning paradigm for general normal form games," MPRA Paper 16765, University Library of Munich, Germany.
  2. Spiliopoulos, Leonidas, 2012. "Interactive learning in 2×2 normal form games by neural network agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5557-5562.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:375:y:2007:i:2:p:717-725. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.