IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v338y2004i1p84-91.html
   My bibliography  Save this article

Sandpile avalanche dynamics on scale-free networks

Author

Listed:
  • Lee, D.-S.
  • Goh, K.-I.
  • Kahng, B.
  • Kim, D.

Abstract

Avalanche dynamics is an indispensable feature of complex systems. Here, we study the self-organized critical dynamics of avalanches on scale-free networks with degree exponent γ through the Bak–Tang–Wiesenfeld (BTW) sandpile model. The threshold height of a node i is set as ki1−η with 0⩽η<1, where ki is the degree of node i. Using the branching process approach, we obtain the avalanche size and the duration distribution of sand toppling, which follow power-laws with exponents τ and δ, respectively. They are given as τ=(γ−2η)/(γ−1−η) and δ=(γ−1−η)/(γ−2) for γ<3−η, 3/2 and 2 for γ>3−η, respectively. The power-law distributions are modified by a logarithmic correction at γ=3−η.

Suggested Citation

  • Lee, D.-S. & Goh, K.-I. & Kahng, B. & Kim, D., 2004. "Sandpile avalanche dynamics on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 84-91.
  • Handle: RePEc:eee:phsmap:v:338:y:2004:i:1:p:84-91
    DOI: 10.1016/j.physa.2004.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104002237
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Zhou & Weijian Zheng & Dali Wang & David W. Coit, 2024. "A resilient network recovery framework against cascading failures with deep graph learning," Journal of Risk and Reliability, , vol. 238(1), pages 193-203, February.
    2. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
    3. Ouyang, Bo & Teng, Zhaosheng & Tang, Qiu, 2016. "Dynamics in local influence cascading models," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 182-186.
    4. Zhou, Jian & Coit, David W. & Felder, Frank A. & Tsianikas, Stamatis, 2023. "Combined optimization of system reliability improvement and resilience with mixed cascading failures in dependent network systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Aggarwal, Sandeep Kumar & Pastén, Denisse & Khan, Prosanta Kumar, 2017. "Multifractal analysis of 2001 Mw7.7 Bhuj earthquake sequence in Gujarat, Western India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 177-186.
    6. Pastén, Denisse & Pavez-Orrego, Claudia, 2023. "Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Nicky Zachariou & Paul Expert & Misako Takayasu & Kim Christensen, 2015. "Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-13, November.
    8. Linqing Liu & Weiran Wang & Xiaofei Yan & Mengyun Shen & Haizhi Chen, 2023. "The cascade influence of grain trade shocks on countries in the context of the Russia-Ukraine conflict," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-28, December.
    9. Hou, Rui & Yang, Jianmei & Yao, Canzhong & McKelvey, Bill, 2015. "How does competition structure affect industry merger waves? A network analysis perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 140-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:338:y:2004:i:1:p:84-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.