IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v281y2000i1p60-68.html
   My bibliography  Save this article

Scale invariance and universality: organizing principles in complex systems

Author

Listed:
  • Stanley, H.E
  • Amaral, L.A.N
  • Gopikrishnan, P
  • Ivanov, P.Ch
  • Keitt, T.H
  • Plerou, V

Abstract

This paper is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena – scale invariance and universality – can be useful in guiding research on a broad class of complex phenomena. We shall see that while scale invariance has been tested for many years, universality is relatively more rarely discussed. In particular, we shall develop a heuristic argument that serves to make more plausible the universality hypothesis in both thermal critical phenomena and percolation phenomena, and suggest that this argument could be developed into a possible coherent approach to understanding the ubiquity of scale invariance and universality in a wide range of complex systems.

Suggested Citation

  • Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Ivanov, P.Ch & Keitt, T.H & Plerou, V, 2000. "Scale invariance and universality: organizing principles in complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 60-68.
  • Handle: RePEc:eee:phsmap:v:281:y:2000:i:1:p:60-68
    DOI: 10.1016/S0378-4371(00)00195-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100001953
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00195-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    2. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    3. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    4. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    5. Youngki Lee & Luis A. N. Amaral & David Canning & Martin Meyer & H. Eugene Stanley, 1998. "Universal features in the growth dynamics of complex organizations," Papers cond-mat/9804100, arXiv.org.
    6. L. A. N. Amaral & S. V. Buldyrev & S. Havlin & H. Leschhorn & P. Maass & M. A. Salinger & H. E. Stanley & M. H. R. Stanley, 1997. "Scaling behavior in economics: I. Empirical results for company growth," Papers cond-mat/9702082, arXiv.org.
    7. Timothy H. Keitt & H. Eugene Stanley, 1998. "Dynamics of North American breeding bird populations," Nature, Nature, vol. 393(6682), pages 257-260, May.
    8. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    9. Vasiliki Plerou & Luís A. Nunes Amaral & Parameswaran Gopikrishnan & Martin Meyer & H. Eugene Stanley, 1999. "Similarities between the growth dynamics of university research and of competitive economic activities," Nature, Nature, vol. 400(6743), pages 433-437, July.
    10. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le, Thi-Tinh-Minh & Retiere, Nicolas, 2017. "Approximation of the frequency response of power systems based on scale invariance," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 157-171.
    2. Xiong, Gang & Zhang, Shuning & Liu, Qiang, 2012. "The time-singularity multifractal spectrum distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4727-4739.
    3. Tanya Araujo & Francisco Louçã, 2007. "The Seismography of Crashes in Financial Markets," Working Papers Department of Economics 2007/05, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    4. Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
    5. Acedo, L. & Lamprianidou, E. & Moraño, J.-A. & Villanueva-Oller, J. & Villanueva, R.-J., 2015. "Firing patterns in a random network cellular automata model of the brain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 111-119.
    6. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    7. Eftaxias, K., 2010. "Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 133-140.
    8. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    9. Lin Wang & Xiang Li & Yi-Qing Zhang & Yan Zhang & Kan Zhang, 2011. "Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    10. Balasis, Georgios & Daglis, Ioannis A. & Anastasiadis, Anastasios & Papadimitriou, Constantinos & Mandea, Mioara & Eftaxias, Konstantinos, 2011. "Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 341-346.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.
    2. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    3. Stanley, H.Eugene, 2000. "Exotic statistical physics: Applications to biology, medicine, and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 1-17.
    4. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
    5. Stanley, H.E. & Amaral, L.A.N. & Gabaix, X. & Gopikrishnan, P. & Plerou, V., 2001. "Similarities and differences between physics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 1-15.
    6. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    7. Amaral, L.A.N. & Gopikrishnan, P. & Plerou, V. & Stanley, H.E., 2001. "A model for the growth dynamics of economic organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 127-136.
    8. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    9. Luis A. N. Amaral & P. Gopikrishnan & Kaushik Matia & Vasiliki Plerou & H. E. Stanley, 2001. "Application of statistical physics methods and conceptsto the study of science & technology systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 9-36, April.
    10. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    11. Hernan Mondani & Petter Holme & Fredrik Liljeros, 2014. "Fat-Tailed Fluctuations in the Size of Organizations: The Role of Social Influence," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    12. Misako Takayasu & Hayafumi Watanabe & Hideki Takayasu, 2013. "Generalised central limit theorems for growth rate distribution of complex systems," Papers 1301.2728, arXiv.org, revised Jan 2014.
    13. Stanley, H.E. & Buldyrev, S.V. & Franzese, G. & Havlin, S. & Mallamace, F. & Kumar, P. & Plerou, V. & Preis, T., 2010. "Correlated randomness and switching phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(15), pages 2880-2893.
    14. Xie, Wen-Jie & Gu, Gao-Feng & Zhou, Wei-Xing, 2010. "On the growth of primary industry and population of China’s counties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3876-3882.
    15. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    16. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    17. Kostanjcar, Zvonko & Jeren, Branko & Juretic, Zeljan, 2012. "Impact of uncertainty in expected return estimation on stock price volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5563-5571.
    18. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    19. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    20. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:281:y:2000:i:1:p:60-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.