Advanced Search
MyIDEAS: Login to save this article or follow this journal

The decomposition of inequality reconsidered: Weakly decomposable measures

Contents:

Author Info

  • Ebert, Udo
Registered author(s):

    Abstract

    The paper characterizes the class of weakly decomposable (aggregable) inequality measures which satisfy a new (weak) decomposition (and aggregation) property. These measures can be decomposed into the sum of the usual within-group and a between-group term which is based on the inequality between all pairs of individuals belonging to the groups involved. The measures therefore depend on the inequality index for two-person distributions and are proportional to the total sum of the inequality values between all pairs of individuals. Extending Gini's mean difference, the Gini coefficient, and the variance of logarithms we characterize three families of measures. By choosing other basic measures further (families of) weakly decomposable measures can be defined.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V88-50393N1-1/2/6fa0219e6262a0b7d0955d43e11cd19a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Mathematical Social Sciences.

    Volume (Year): 60 (2010)
    Issue (Month): 2 (September)
    Pages: 94-103

    as in new window
    Handle: RePEc:eee:matsoc:v:60:y:2010:i:2:p:94-103

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/505565

    Related research

    Keywords: Inequality measures Decomposition Aggregation Gini's mean difference The Gini coefficient Variance of logarithms;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Aaberge, Rolf, 2001. "Axiomatic Characterization of the Gini Coefficient and Lorenz Curve Orderings," Journal of Economic Theory, Elsevier, vol. 101(1), pages 115-132, November.
    2. Peter J. Lambert & Andre' Decoster, 2005. "The Gini coefficient reveals more," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 373-400.
    3. Shorrocks, A F, 1980. "The Class of Additively Decomposable Inequality Measures," Econometrica, Econometric Society, vol. 48(3), pages 613-25, April.
    4. Dagum, Camilo, 1997. "A New Approach to the Decomposition of the Gini Income Inequality Ratio," Empirical Economics, Springer, vol. 22(4), pages 515-31.
    5. James E. Foster & Artyom A. Shneyerov, 1999. "A general class of additively decomposable inequality measures," Economic Theory, Springer, vol. 14(1), pages 89-111.
    6. Weymark, John A., 1981. "Generalized gini inequality indices," Mathematical Social Sciences, Elsevier, vol. 1(4), pages 409-430, August.
    7. Sen, Amartya, 1974. "Informational bases of alternative welfare approaches : Aggregation and income distribution," Journal of Public Economics, Elsevier, vol. 3(4), pages 387-403, November.
    8. Kolm, Serge-Christophe, 1976. "Unequal inequalities. I," Journal of Economic Theory, Elsevier, vol. 12(3), pages 416-442, June.
    9. James E. Foster & Efe A. Ok, 1999. "Lorenz Dominance and the Variance of Logarithms," Econometrica, Econometric Society, vol. 67(4), pages 901-908, July.
    10. Yitzhaki, Shlomo, 1983. "On an Extension of the Gini Inequality Index," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 617-28, October.
    11. Shorrocks, Anthony F, 1984. "Inequality Decomposition by Population Subgroups," Econometrica, Econometric Society, vol. 52(6), pages 1369-85, November.
    12. Chakravarty, Satya R, 1988. "Extended Gini Indices of Inequality," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 147-56, February.
    13. Foster, James E., 1983. "An axiomatic characterization of the Theil measure of income inequality," Journal of Economic Theory, Elsevier, vol. 31(1), pages 105-121, October.
    14. Ebert, Udo, 1984. "Measures of distance between income distributions," Journal of Economic Theory, Elsevier, vol. 32(2), pages 266-274, April.
    15. Aaberge, Rolf, 1997. "Interpretation of changes in rank-dependent measures of inequality," Economics Letters, Elsevier, vol. 55(2), pages 215-219, August.
    16. Kolm, Serge-Christophe, 1976. "Unequal inequalities. II," Journal of Economic Theory, Elsevier, vol. 13(1), pages 82-111, August.
    17. Blackorby, Charles & Donaldson, David, 1980. "A Theoretical Treatment of Indices of Absolute Inequality," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 107-36, February.
    18. Foster, James E. & Shneyerov, Artyom A., 2000. "Path Independent Inequality Measures," Journal of Economic Theory, Elsevier, vol. 91(2), pages 199-222, April.
    19. Bourguignon, Francois, 1979. "Decomposable Income Inequality Measures," Econometrica, Econometric Society, vol. 47(4), pages 901-20, July.
    20. Cowell, Frank A. & Kuga, Kiyoshi, 1981. "Additivity and the entropy concept: An axiomatic approach to inequality measurement," Journal of Economic Theory, Elsevier, vol. 25(1), pages 131-143, August.
    21. Ebert, Udo, 1988. "A Family of Aggregative Compromise Inequality Measures," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(2), pages 363-76, May.
    22. Elchanan Ben Porath & Itzhak Gilboa, 1991. "Linear Measures, the Gini Index and the Income-Equality Tradeoff," Discussion Papers 944, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    23. Amiel,Yoram & Cowell,Frank, 1999. "Thinking about Inequality," Cambridge Books, Cambridge University Press, number 9780521466967.
    24. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    25. Udo Ebert, 1999. "Dual Decomposable Inequality Measures," Canadian Journal of Economics, Canadian Economics Association, vol. 32(1), pages 234-246, February.
    26. Thon, Dominique, 1982. "An axiomatization of the Gini coefficient," Mathematical Social Sciences, Elsevier, vol. 2(2), pages 131-143, March.
    27. Zagier, Don, 1983. "Inequalities for the Gini coefficient of composite populations," Journal of Mathematical Economics, Elsevier, vol. 12(2), pages 103-118, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Arthur Charpentier & Stéphane Mussard, 2011. "Income inequality games," Journal of Economic Inequality, Springer, vol. 9(4), pages 529-554, December.
    2. Chameni Nembua, Célestin & Demsou, Themoi, 2013. "Ordinal equivalence of values and Pigou-Dalton transfers in TU-games," MPRA Paper 44895, University Library of Munich, Germany, revised 09 Mar 2013.
    3. Satya R. Chakravarty & Nachiketa Chattopadhyay & Conchita D’Ambrosio, 2013. "On a family of achievement and shortfall inequality indices," Working Papers 300, ECINEQ, Society for the Study of Economic Inequality.
    4. Pauline Mornet, 2013. "A program for weakly decomposable inequality measures by population subgroups," Economics Bulletin, AccessEcon, vol. 33(3), pages 1738-1750.
    5. Mornet, Pauline & Zoli, Claudio & Mussard, Stéphane & Sadefo-Kamdem, Jules & Seyte, Françoise & Terraza, Michel, 2013. "The (α, β)-multi-level α-Gini decomposition with an illustration to income inequality in France in 2005," Economic Modelling, Elsevier, vol. 35(C), pages 944-963.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:60:y:2010:i:2:p:94-103. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.