IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v91y2013icp29-40.html
   My bibliography  Save this article

Comparison of maximum peak power tracking algorithms for a small wind turbine

Author

Listed:
  • Kot, R.
  • Rolak, M.
  • Malinowski, M.

Abstract

This paper reviews maximum power point tracking (MPPT) algorithms dedicated for small wind turbines (SWTs). Many control strategies with different features are available and it is very important to select proper one in order to achieve best performance and low cost. Three most widely used algorithms are discussed. Two are based on turbine static parameters such as power versus rotational speed characteristic Pm(ω) and optimum tip-speed ratio λopt. Third one, which seems to be most promising, iteratively searches for optimum operating point and it does not require prior knowledge of the turbine. This work attempts to summarize and compare these algorithms. Detailed description of each one is made with most significant qualities emphasized. Discussion is supported by the simulation studies using Synopsys Saber software. Results for 5kW SWT with diode rectifier and DC/DC boost converter are shown and commented.

Suggested Citation

  • Kot, R. & Rolak, M. & Malinowski, M., 2013. "Comparison of maximum peak power tracking algorithms for a small wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 91(C), pages 29-40.
  • Handle: RePEc:eee:matcom:v:91:y:2013:i:c:p:29-40
    DOI: 10.1016/j.matcom.2013.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413000657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2013.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Ghossini, Hossam & Locment, Fabrice & Sechilariu, Manuela & Gagneur, Laurent & Forgez, Christophe, 2016. "Adaptive-tuning of extended Kalman filter used for small scale wind generator control," Renewable Energy, Elsevier, vol. 85(C), pages 1237-1245.
    2. Ganjefar, Soheil & Ghasemi, Ali Akbar, 2014. "A novel-strategy controller design for maximum power extraction in stand-alone windmill systems," Energy, Elsevier, vol. 76(C), pages 326-335.
    3. Alizadeh, Mojtaba & Kojori, Shokrollah Shokri, 2015. "Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller," Energy, Elsevier, vol. 91(C), pages 610-629.
    4. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    5. Makeen, Peter & Ghali, Hani A. & Memon, Saim & Duan, Fang, 2023. "Smart techno-economic operation of electric vehicle charging station in Egypt," Energy, Elsevier, vol. 264(C).
    6. Junji Kondoh & Hidetoshi Mizuno & Takuji Funamoto, 2019. "Fault Ride-Through Characteristics of Small Wind Turbines," Energies, MDPI, vol. 12(23), pages 1-12, December.
    7. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    8. Golnary, Farshad & Moradi, Hamed, 2022. "Identification of the dynamics of the drivetrain and estimating its unknown parts in a large scale wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 50-69.
    9. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Hai-gang, 2016. "Hydro-viscous transmission based maximum power extraction control for continuously variable speed wind turbine with enhanced efficiency," Renewable Energy, Elsevier, vol. 87(P1), pages 646-655.
    10. Andrzej Bogdan Kasprowicz & Oleksandr Husev & Ryszard Strzelecki, 2022. "Induction Generator with Direct Control and a Limited Number of Measurements on the Side of the Converter Connected to the Power Grid," Energies, MDPI, vol. 16(1), pages 1-23, December.
    11. Ganjefar, Soheil & Ghassemi, Ali Akbar & Ahmadi, Mohamad Mehdi, 2014. "Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network," Energy, Elsevier, vol. 67(C), pages 444-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:91:y:2013:i:c:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.