IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i7p1430-1440.html
   My bibliography  Save this article

GARCH dependence in extreme value models with Bayesian inference

Author

Listed:
  • Zhao, Xin
  • Scarrott, Carl John
  • Oxley, Les
  • Reale, Marco

Abstract

Extreme value methods are widely used in financial applications such as risk analysis, forecasting and pricing models. One of the challenges with their application in finance is accounting for the temporal dependence between the observations, for example the stylised fact that financial time series exhibit volatility clustering. Various approaches have been proposed to capture the dependence. Commonly a two-stage approach is taken, where the volatility dependence is removed using a volatility model like a GARCH (or one of its many incarnations) followed by application of standard extreme value models to the assumed independent residual innovations.

Suggested Citation

  • Zhao, Xin & Scarrott, Carl John & Oxley, Les & Reale, Marco, 2011. "GARCH dependence in extreme value models with Bayesian inference," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1430-1440.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:7:p:1430-1440
    DOI: 10.1016/j.matcom.2010.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410002703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    2. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    3. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    4. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    8. Hang Chan, Ngai & Deng, Shi-Jie & Peng, Liang & Xia, Zhendong, 2007. "Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 137(2), pages 556-576, April.
    9. Xin Zhao & Carl Scarrott & Les Oxley & Marco Reale, 2010. "Extreme value modelling for forecasting market crisis impacts," Applied Financial Economics, Taylor & Francis Journals, vol. 20(1-2), pages 63-72.
    10. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    11. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    12. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    13. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    2. Reboredo, Juan C. & Ugando, Mikel, 2015. "Downside risks in EU carbon and fossil fuel markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 111(C), pages 17-35.
    3. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Boubaker, Sabri & Moussa, Faten, 2023. "Does green improve portfolio optimisation?," Energy Economics, Elsevier, vol. 124(C).
    4. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017. "Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
    5. Huang, Chun-Kai & North, Delia & Zewotir, Temesgen, 2017. "Exchangeability, extreme returns and Value-at-Risk forecasts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 204-216.
    6. Fernando Nascimento & Dani Gamerman & Hedibert Lopes, 2016. "Time-varying extreme pattern with dynamic models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 131-149, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    2. Nieto, María Rosa & Ruiz Ortega, Esther, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    4. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    5. Sofia Anyfantaki & Antonis Demos, 2016. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 293-310, February.
    6. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    7. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    8. Babsiri, Mohamed El & Zakoian, Jean-Michel, 2001. "Contemporaneous asymmetry in GARCH processes," Journal of Econometrics, Elsevier, vol. 101(2), pages 257-294, April.
    9. David McMillan & Alan Speight, 2003. "Asymmetric volatility dynamics in high frequency FTSE-100 stock index futures," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 599-607.
    10. Hua, Jian & Manzan, Sebastiano, 2013. "Forecasting the return distribution using high-frequency volatility measures," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4381-4403.
    11. Christian Francq & Jean-Michel Zakoian, 2014. "Multi-level Conditional VaR Estimation in Dynamic Models," Working Papers 2014-01, Center for Research in Economics and Statistics.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    13. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    14. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    15. Carnero, María Ángeles & Peña, Daniel & Ruiz Ortega, Esther, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Saker Sabkha & Christian de Peretti, 2018. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Working Papers hal-01710398, HAL.
    17. Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
    18. Saker Sabkha & Christian de Peretti, 2022. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Post-Print hal-01710398, HAL.
    19. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    20. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 208-230, Spring.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:7:p:1430-1440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.