IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v40y2012i4p437-444.html
   My bibliography  Save this article

Scheduling to minimize stringer utilization for continuous annealing operations

Author

Listed:
  • Mujawar, Sachin
  • Huang, Simin
  • Nagi, Rakesh

Abstract

In this paper we present a mathematical program and heuristic algorithms to schedule coils for the production operations in a copper (or steel) coil manufacturing industry. The processing facility uses continuous operations for processing (e.g., galvanizing and annealing) while the handling unit is a discrete coil. The ends of coils are “stitched” or welded together to enable continuous processing, and the joint is later sheared off to obtain the processed coils. Processing constraints impose restrictions on the compatibility between a pair of coils that are overcome by introducing a dummy coil called stringer, which is very expensive to a mill. This paper deals with modeling the sequencing/scheduling problem of coils on parallel non-identical machines to minimize stringer utilization. Both computational and practical experiences show the efficiency and effectiveness of the solution approaches. Implementing these methods in an actual coil annealing facility resulted in 65% reduction in stringer utilization.

Suggested Citation

  • Mujawar, Sachin & Huang, Simin & Nagi, Rakesh, 2012. "Scheduling to minimize stringer utilization for continuous annealing operations," Omega, Elsevier, vol. 40(4), pages 437-444.
  • Handle: RePEc:eee:jomega:v:40:y:2012:i:4:p:437-444
    DOI: 10.1016/j.omega.2011.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048311001277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2011.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    2. Widmer, Marino & Hertz, Alain, 1989. "A new heuristic method for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 41(2), pages 186-193, July.
    3. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    4. Lee, Young Hoon & Pinedo, Michael, 1997. "Scheduling jobs on parallel machines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 100(3), pages 464-474, August.
    5. D de Ladurantaye & M Gendreau & J-Y Potvin, 2007. "Scheduling a hot rolling mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 288-300, March.
    6. Kut C. So, 1990. "Some Heuristics for Scheduling Jobs on Parallel Machines with Setups," Management Science, INFORMS, vol. 36(4), pages 467-475, April.
    7. Liao, C. J. & Yu, W. C., 1996. "Sequencing heuristics for dependent setups in a continuous process industry," Omega, Elsevier, vol. 24(6), pages 649-659, December.
    8. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    9. Lopez, Leo & Carter, Michael W. & Gendreau, Michel, 1998. "The hot strip mill production scheduling problem: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 317-335, April.
    10. Tang, Lixin & Zhao, Yufang, 2008. "Scheduling a single semi-continuous batching machine," Omega, Elsevier, vol. 36(6), pages 992-1004, December.
    11. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    12. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    13. Ruiz-Torres, Alex J. & Ho, Johnny C. & Ablanedo-Rosas, José H., 2011. "Makespan and workstation utilization minimization in a flowshop with operations flexibility," Omega, Elsevier, vol. 39(3), pages 273-282, June.
    14. Rajendran, Chandrasekharan & Ziegler, Hans, 1997. "An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 103(1), pages 129-138, November.
    15. Richard E. Box & Donald G. Herbe, 1988. "A Scheduling Model for LTV Steel's Cleveland Works' Twin Strand Continuous Slab Caster," Interfaces, INFORMS, vol. 18(1), pages 42-56, February.
    16. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Wu & Dan Zhang & Yang Yang & Gongshu Wang & Lijie Su, 2022. "Multi-Stage Multi-Product Production and Inventory Planning for Cold Rolling under Random Yield," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    2. Huang, Shan-Huen & Lin, Pei-Chun, 2015. "Vehicle routing–scheduling for municipal waste collection system under the “Keep Trash off the Ground” policy," Omega, Elsevier, vol. 55(C), pages 24-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hinder, Oliver & Mason, Andrew J., 2017. "A novel integer programing formulation for scheduling with family setup times on a single machine to minimize maximum lateness," European Journal of Operational Research, Elsevier, vol. 262(2), pages 411-423.
    2. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    3. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    4. Xi, Yue & Jang, Jaejin, 2012. "Scheduling jobs on identical parallel machines with unequal future ready time and sequence dependent setup: An experimental study," International Journal of Production Economics, Elsevier, vol. 137(1), pages 1-10.
    5. Karen Puttkammer & Matthias G. Wichmann & Thomas S. Spengler, 2016. "A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption," Journal of Business Economics, Springer, vol. 86(5), pages 537-573, July.
    6. J. E. Beasley & M. Krishnamoorthy & Y. M. Sharaiha & D. Abramson, 2000. "Scheduling Aircraft Landings—The Static Case," Transportation Science, INFORMS, vol. 34(2), pages 180-197, May.
    7. Ferretti, Ivan & Zanoni, Simone & Zavanella, Lucio, 2006. "Production-inventory scheduling using Ant System metaheuristic," International Journal of Production Economics, Elsevier, vol. 104(2), pages 317-326, December.
    8. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    9. Jinwen Ou, 2020. "Near-linear-time approximation algorithms for scheduling a batch-processing machine with setups and job rejection," Journal of Scheduling, Springer, vol. 23(5), pages 525-538, October.
    10. Tang, Lixin & Wang, Xianpeng, 2009. "Simultaneously scheduling multiple turns for steel color-coating production," European Journal of Operational Research, Elsevier, vol. 198(3), pages 715-725, November.
    11. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    12. Lele Zhang & Andrew Wirth, 2010. "On-line machine scheduling with batch setups," Journal of Combinatorial Optimization, Springer, vol. 20(3), pages 285-306, October.
    13. F Jin & J N D Gupta & S Song & C Wu, 2010. "Single machine scheduling with sequence-dependent family setups to minimize maximum lateness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1181-1189, July.
    14. Marko Ɖurasević & Domagoj Jakobović, 2019. "Creating dispatching rules by simple ensemble combination," Journal of Heuristics, Springer, vol. 25(6), pages 959-1013, December.
    15. Byung-Cheon Choi & Myoung-Ju Park, 2015. "A Batch Scheduling Problem with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-19, December.
    16. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    17. Yuan, Shuai & Skinner, Bradley & Huang, Shoudong & Liu, Dikai, 2013. "A new crossover approach for solving the multiple travelling salesmen problem using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 228(1), pages 72-82.
    18. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.
    19. Su, Fuyong & Kong, Linglu & Wang, Hui & Wen, Zhi, 2021. "Modeling and application for rolling scheduling problem based on TSP," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    20. Löhndorf, Nils & Riel, Manuel & Minner, Stefan, 2014. "Simulation optimization for the stochastic economic lot scheduling problem with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 157(C), pages 170-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:4:p:437-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.