IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v32y2004i2p121-129.html
   My bibliography  Save this article

Employee scheduling and makespan minimization in a flow shop with multi-processor work stations: a case study

Author

Listed:
  • Huq, Faizul
  • Cutright, Kenneth
  • Martin, Clarence

Abstract

This paper describes the development of a mixed integer linear programming model for a flow shop with multi-processor workstations. The primary objective of the model is to minimize makespan through lot-streaming. A secondary objective is to determine workforce size and schedule. A constant daily workload is assumed. The model is simple enough to be understood and implemented by managers and supervisors using readily available spreadsheet programs. An actual process, at a local insurance company handling a moderate daily level of document and payment processing, is used as a case study. The results of the case study yielded an improvement in the makespan of the current process. The model, shown in this paper to be a useful tool in the document processing industry, is generic enough to be applied to other multi-processor flow shops.

Suggested Citation

  • Huq, Faizul & Cutright, Kenneth & Martin, Clarence, 2004. "Employee scheduling and makespan minimization in a flow shop with multi-processor work stations: a case study," Omega, Elsevier, vol. 32(2), pages 121-129, April.
  • Handle: RePEc:eee:jomega:v:32:y:2004:i:2:p:121-129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(03)00114-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Daniels & Joseph B. Mazzola, 1994. "Flow Shop Scheduling with Resource Flexibility," Operations Research, INFORMS, vol. 42(3), pages 504-522, June.
    2. Suliman, S. M. A., 2000. "A two-phase heuristic approach to the permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 143-152, March.
    3. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    4. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    5. S. K. Goyal, 1976. "Note--Note on "Manufacturing Cycle Time Determination for a Multi-Stage Economic Production Quantity Model"," Management Science, INFORMS, vol. 23(3), pages 332-333, November.
    6. B. J. Lageweg & J. K. Lenstra & A. H. G. Rinnooy Kan, 1978. "A General Bounding Scheme for the Permutation Flow-Shop Problem," Operations Research, INFORMS, vol. 26(1), pages 53-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    2. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
    3. Gribkovskaia, Irina V. & Kovalev, Sergey & Werner, Frank, 2010. "Batching for work and rework processes on dedicated facilities to minimize the makespan," Omega, Elsevier, vol. 38(6), pages 522-527, December.
    4. Martin, Clarence H, 2009. "A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming," Omega, Elsevier, vol. 37(1), pages 126-137, February.
    5. Lawson, Barry R. & Baker, Kenneth R. & Powell, Stephen G. & Foster-Johnson, Lynn, 2009. "A comparison of spreadsheet users with different levels of experience," Omega, Elsevier, vol. 37(3), pages 579-590, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronconi, Debora P., 2004. "A note on constructive heuristics for the flowshop problem with blocking," International Journal of Production Economics, Elsevier, vol. 87(1), pages 39-48, January.
    2. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    3. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    4. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    5. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    6. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    7. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
    8. Smutnicki, Czeslaw & Pempera, Jaroslaw & Bocewicz, Grzegorz & Banaszak, Zbigniew, 2022. "Cyclic flow-shop scheduling with no-wait constraints and missing operations," European Journal of Operational Research, Elsevier, vol. 302(1), pages 39-49.
    9. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    10. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    11. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    12. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    13. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    14. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    15. Aldowaisan, Tariq & Allahverdi, Ali, 2004. "New heuristics for m-machine no-wait flowshop to minimize total completion time," Omega, Elsevier, vol. 32(5), pages 345-352, October.
    16. Vacharapoom Benjaoran & Nashwan Dawood & Brian Hobbs, 2005. "Flowshop scheduling model for bespoke precast concrete production planning," Construction Management and Economics, Taylor & Francis Journals, vol. 23(1), pages 93-105.
    17. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    18. Rubén Ruiz & Ali Allahverdi, 2007. "Some effective heuristics for no-wait flowshops with setup times to minimize total completion time," Annals of Operations Research, Springer, vol. 156(1), pages 143-171, December.
    19. Bo Liu & Ling Wang & Ying Liu & Shouyang Wang, 2011. "A unified framework for population-based metaheuristics," Annals of Operations Research, Springer, vol. 186(1), pages 231-262, June.
    20. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:32:y:2004:i:2:p:121-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.