IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v27y1999i3p305-314.html
   My bibliography  Save this article

Towards realism in network simulation

Author

Listed:
  • Williams, Terry

Abstract

The use of networks handling uncertainty to provide a temporal risk analysis of projects is now widespread. However, such analyses frequently give rise to very wide probability distributions, and thus in practice are described as not credible. This is largely because the simulations do not reflect the actions that management would take to bring late-running projects under control. These are difficult to include in models, not because the actions themselves are complex, but rather because the effects of those actions are not well-understood. These effects are often much less effective than expected and some are counter-intuitive. However, much work has been done in modelling projects using system dynamics, and this work can give some useful insights into the effects of management actions in projects, both their behaviour and indications of their cumulative impact. This paper has attempted to describe these indications and then to apply such lessons to network simulations, to gain the benefit of the insights without losing the operational advantages of the networks. Some small illustrative models of the effects are given. It is hoped that the use of such modelling can help to bring additional realism to probabilistic network modelling.

Suggested Citation

  • Williams, Terry, 1999. "Towards realism in network simulation," Omega, Elsevier, vol. 27(3), pages 305-314, June.
  • Handle: RePEc:eee:jomega:v:27:y:1999:i:3:p:305-314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(98)00062-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bajis M. Dodin & Salah E. Elmaghraby, 1985. "Approximating the Criticality Indices of the Activities in PERT Networks," Management Science, INFORMS, vol. 31(2), pages 207-223, February.
    2. Bajis Dodin, 1985. "Bounding the Project Completion Time Distribution in PERT Networks," Operations Research, INFORMS, vol. 33(4), pages 862-881, August.
    3. T. K. Littlefield & P. H. Randolph, 1991. "PERT Duration Times: Mathematics or MBO," Interfaces, INFORMS, vol. 21(6), pages 92-95, December.
    4. Kamburowski, Jerzy, 1985. "An upper bound on the expected completion time of PERT networks," European Journal of Operational Research, Elsevier, vol. 21(2), pages 206-212, August.
    5. Ragsdale, C, 1989. "The current state of network simulation in project management theory and practice," Omega, Elsevier, vol. 17(1), pages 21-25.
    6. Athanassios N. Avramidis & Kenneth W. Bauer & James R. Wilson, 1991. "Simulation of stochastic activity networks using path control variates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 183-201, April.
    7. Chapman, C. B., 1995. "On the minimum cost project schedule--Some comments," Omega, Elsevier, vol. 23(4), pages 467-468, August.
    8. Kidd, John B, 1987. "A comparison between the VERT program and other methods of project duration estimation," Omega, Elsevier, vol. 15(2), pages 129-134.
    9. Veena G. Adlakha, 1986. "Note---An Improved Conditional Monte Carlo Technique for the Stochastic Shortest Path Problem," Management Science, INFORMS, vol. 32(10), pages 1360-1367, October.
    10. Genaro J. Gutierrez & Panagiotis Kouvelis, 1991. "Parkinson's Law and Its Implications for Project Management," Management Science, INFORMS, vol. 37(8), pages 990-1001, August.
    11. Golenko-Ginzburg, Dmitri, 1988. "Controlled alternative activity networks for project management," European Journal of Operational Research, Elsevier, vol. 37(3), pages 336-346, December.
    12. V. G. Kulkarni & V. G. Adlakha, 1986. "Markov and Markov-Regenerative pert Networks," Operations Research, INFORMS, vol. 34(5), pages 769-781, October.
    13. Kenneth G. Cooper, 1980. "Naval Ship Production: A Claim Settled and a Framework Built," Interfaces, INFORMS, vol. 10(6), pages 20-36, December.
    14. Luc P. Devroye, 1979. "Inequalities for the Completion Times of Stochastic PERT Networks," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 441-447, November.
    15. Kamburowski, J., 1995. "On the minimum cost project schedule," Omega, Elsevier, vol. 23(4), pages 463-465, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C-C Chang & R-S Chen, 2007. "Project advancement and its applications to multi-air-route quality budget allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1008-1020, August.
    2. Julie Eatock & Ray J. Paul & Alan Serrano, 2002. "Developing a Theory to Explain the Insights Gained Concerning Information Systems and Business Process Behaviour: The ASSESS-IT Project," Information Systems Frontiers, Springer, vol. 4(3), pages 303-316, September.
    3. Vanhoucke, Mario, 2010. "Using activity sensitivity and network topology information to monitor project time performance," Omega, Elsevier, vol. 38(5), pages 359-370, October.
    4. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2021. "Using Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 288(3), pages 736-752.
    5. Federico Cosenz & Guido Noto, 2016. "Applying System Dynamics Modelling to Strategic Management: A Literature Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 33(6), pages 703-741, November.
    6. Vanhoucke, Mario, 2011. "On the dynamic use of project performance and schedule risk information during projecttracking," Omega, Elsevier, vol. 39(4), pages 416-426, August.
    7. J Davis & A MacDonald & L White, 2010. "Problem-structuring methods and project management: an example of stakeholder involvement using Hierarchical Process Modelling methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 893-904, June.
    8. Bridget Tawiah Badu Eshun & Albert P.C. Chan, 2021. "An Evaluation of Project Risk Dynamics in Sino-Africa Public Infrastructure Delivery; A Causal Loop and Interpretive Structural Modelling Approach (ISM-CLD)," Sustainability, MDPI, vol. 13(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Terry, 1995. "A classified bibliography of recent research relating to project risk management," European Journal of Operational Research, Elsevier, vol. 85(1), pages 18-38, August.
    2. Badinelli, Ralph D., 1996. "Approximating probability density functions and their convolutions using orthogonal polynomials," European Journal of Operational Research, Elsevier, vol. 95(1), pages 211-230, November.
    3. Lee, Heejung & Suh, Hyo-Won, 2008. "Estimating the duration of stochastic workflow for product development process," International Journal of Production Economics, Elsevier, vol. 111(1), pages 105-117, January.
    4. Kamburowski, J., 1997. "New validations of PERT times," Omega, Elsevier, vol. 25(3), pages 323-328, June.
    5. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.
    6. Elmaghraby, S. E. & Fathi, Y. & Taner, M. R., 1999. "On the sensitivity of project variability to activity mean duration," International Journal of Production Economics, Elsevier, vol. 62(3), pages 219-232, September.
    7. Fatemi Ghomi, S. M. T. & Rabbani, M., 2003. "A new structural mechanism for reducibility of stochastic PERT networks," European Journal of Operational Research, Elsevier, vol. 145(2), pages 394-402, March.
    8. Golenko-Ginzburg, Dimitri & Gonik, Aharon & Kesler, Shmuel, 1996. "Hierarchical decision-making model for planning and controlling stochastic projects," International Journal of Production Economics, Elsevier, vol. 46(1), pages 39-54, December.
    9. Li, Xiaobo & Natarajan, Karthik & Teo, Chung-Piaw & Zheng, Zhichao, 2014. "Distributionally robust mixed integer linear programs: Persistency models with applications," European Journal of Operational Research, Elsevier, vol. 233(3), pages 459-473.
    10. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    11. Dawson, C. W., 1995. "A dynamic sampling technique for the simulation of probabilistic and generalized activity networks," Omega, Elsevier, vol. 23(5), pages 557-566, October.
    12. R. Alan Bowman, 2003. "Sensitivity curves for effective project management," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(5), pages 481-497, August.
    13. Abdelkader, Yousry H., 2004. "Evaluating project completion times when activity times are Weibull distributed," European Journal of Operational Research, Elsevier, vol. 157(3), pages 704-715, September.
    14. Azaron, Amir & Tavakkoli-Moghaddam, Reza, 2007. "Multi-objective time-cost trade-off in dynamic PERT networks using an interactive approach," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1186-1200, August.
    15. Verónica Morales-Sánchez & Antonio Hernández-Mendo & Pedro Sánchez-Algarra & Ángel Blanco-Villaseñor & María-Teresa Anguera-Argilaga, 2009. "Random PERT: application to physical activity/sports programs," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(2), pages 225-236, March.
    16. Vanhoucke, Mario, 2010. "Using activity sensitivity and network topology information to monitor project time performance," Omega, Elsevier, vol. 38(5), pages 359-370, October.
    17. Daniel Reich & Leo Lopes, 2011. "Preprocessing Stochastic Shortest-Path Problems with Application to PERT Activity Networks," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 460-469, August.
    18. Tetsuo Iida, 2000. "Computing bounds on project duration distributions for stochastic PERT networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 559-580, October.
    19. Madadi, M. & Iranmanesh, H., 2012. "A management oriented approach to reduce a project duration and its risk (variability)," European Journal of Operational Research, Elsevier, vol. 219(3), pages 751-761.
    20. Zhichao Zheng & Karthik Natarajan & Chung-Piaw Teo, 2016. "Least Squares Approximation to the Distribution of Project Completion Times with Gaussian Uncertainty," Operations Research, INFORMS, vol. 64(6), pages 1406-1421, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:27:y:1999:i:3:p:305-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.