Advanced Search
MyIDEAS: Login

On nonparametric classification with missing covariates

Contents:

Author Info

  • Mojirsheibani, Majid
  • Montazeri, Zahra
Registered author(s):

    Abstract

    General procedures are proposed for nonparametric classification in the presence of missing covariates. Both kernel-based imputation as well as Horvitz-Thompson-type inverse weighting approaches are employed to handle the presence of missing covariates. In the case of imputation, it is a certain regression function which is being imputed (and not the missing values). Using the theory of empirical processes, the performance of the resulting classifiers is assessed by obtaining exponential bounds on the deviations of their conditional errors from that of the Bayes classifier. These bounds, in conjunction with the Borel-Cantelli lemma, immediately provide various strong consistency results.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4M1CYTT-2/2/06a90f69eb1b297e1d98388774f1fcbc
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 98 (2007)
    Issue (Month): 5 (May)
    Pages: 1051-1071

    as in new window
    Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1051-1071

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Classification Missing covariate Empirical process Regression;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
    2. Hazelton, Martin L., 2000. "Marginal density estimation from incomplete bivariate data," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 75-84, March.
    3. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1051-1071. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.